consider 2(a^2 + b^2 + c^2) - 2(ab + bc + ac)
= (a^2 - 2ab +b^2) + (a^2 - 2ac + c^2) + (b^2 - 2bc + c^2)
= (a-b)^2 + (a-c)^2 + (b-c)^2
>= 0 (since each square term is itself >=0, so is their sum.)
well, if
2(a^2 + b^2 + c^2) - 2(ab + bc + ac) >= 0 then
(a^2 + b^2 + c^2) - (ab + bc + ac) >= 0 and
(a^2 + b^2 + c^2) >= (ab + bc + ac)
|
Posted by Paul
on 2017-03-06 08:45:57 |