Let
m*n=w (i)
m is a 3-digit number
so is n
w is a 6-digit number
In equation (i) only 4 distinct digits are used.
Find the possible equations.
(In reply to
re: Too many - here's some by Ady TZIDON)
Answers for the revised puzzle:
500 500 250000
501 501 251001
502 502 252004
525 525 275625
526 526 276676
527 527 277729
Same format as before, but this time m=n so w=m^2
Note, the 500^2 case uses only 3 different digits, so if, in the puzzle, only is changed to exactly, the second solution above becomes the unique solution.
DefDbl A-Z
Dim crlf$
Private Sub Form_Load()
Form1.Visible = True
Text1.Text = ""
crlf = Chr$(13) + Chr$(10)
For m = 100 To 999
ms$ = LTrim(Str(m))
n = m
ns$ = LTrim(Str(n))
w = m * n
ws$ = LTrim(Str(w))
If Len(ws) = 6 Then
tst$ = ms + ns + ws
used$ = ""
good = 1
For i = 1 To Len(tst)
If InStr(used, Mid(tst, i, 1)) = 0 Then
used = used + Mid(tst, i, 1)
DoEvents
If Len(used) > 4 Then good = 0: Exit For
End If
Next
If good Then
ct = ct + 1
If ct >= 3 Then
Text1.Text = Text1.Text & Str(m - 2) & Str(n - 2) & Str((m - 2) * (n - 2)) & crlf
Text1.Text = Text1.Text & Str(m - 1) & Str(n - 1) & Str((m - 1) * (n - 1)) & crlf
Text1.Text = Text1.Text & Str(m) & Str(n) & Str(w) & crlf & crlf
End If
Else
ct = 0
End If
End If
Next
Text1.Text = Text1.Text & crlf & " done"
End Sub
Edited on December 3, 2017, 12:06 pm
|
Posted by Charlie
on 2017-12-03 11:45:15 |