Disregarding the requirement that each of the five differences should be unique there are 55 sets of five sequences, presented below. Each set is listed in order of the first member of each sequence. Only the last two sets listed have unique differences per sequence.
-------------- sets --------------- differences
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 12 14 11 13 15 1 1 1 2 2
1 2 3 4 5 6 7 9 11 8 10 12 13 14 15 1 1 2 2 1
1 2 3 4 5 6 7 10 13 8 11 14 9 12 15 1 1 3 3 3
1 2 3 4 5 6 7 11 15 8 9 10 12 13 14 1 1 4 1 1
1 2 3 4 6 8 5 7 9 10 11 12 13 14 15 1 2 2 1 1
1 2 3 4 6 8 5 7 9 10 12 14 11 13 15 1 2 2 2 2
1 2 3 4 6 8 5 9 13 7 11 15 10 12 14 1 2 4 4 2
1 2 3 4 6 8 5 10 15 7 9 11 12 13 14 1 2 5 2 1
1 2 3 4 7 10 5 8 11 6 9 12 13 14 15 1 3 3 3 1
1 2 3 4 8 12 5 6 7 9 10 11 13 14 15 1 4 1 1 1
1 2 3 4 8 12 5 7 9 6 10 14 11 13 15 1 4 2 4 2
1 2 3 4 8 12 5 9 13 6 10 14 7 11 15 1 4 4 4 4
1 2 3 4 9 14 5 6 7 8 10 12 11 13 15 1 5 1 2 2
1 2 3 4 9 14 5 10 15 6 7 8 11 12 13 1 5 5 1 1
1 3 5 2 4 6 7 8 9 10 11 12 13 14 15 2 2 1 1 1
1 3 5 2 4 6 7 8 9 10 12 14 11 13 15 2 2 1 2 2
1 3 5 2 4 6 7 9 11 8 10 12 13 14 15 2 2 2 2 1
1 3 5 2 4 6 7 10 13 8 11 14 9 12 15 2 2 3 3 3
1 3 5 2 4 6 7 11 15 8 9 10 12 13 14 2 2 4 1 1
1 3 5 2 6 10 4 8 12 7 9 11 13 14 15 2 4 4 2 1
1 3 5 2 7 12 4 6 8 9 10 11 13 14 15 2 5 2 1 1
1 3 5 2 7 12 4 9 14 6 8 10 11 13 15 2 5 5 2 2
1 3 5 2 8 14 4 7 10 6 9 12 11 13 15 2 6 3 3 2
1 4 7 2 5 8 3 6 9 10 11 12 13 14 15 3 3 3 1 1
1 4 7 2 5 8 3 6 9 10 12 14 11 13 15 3 3 3 2 2
1 4 7 2 5 8 3 9 15 6 10 14 11 12 13 3 3 6 4 1
1 4 7 2 6 10 3 9 15 5 8 11 12 13 14 3 4 6 3 1
1 4 7 2 8 14 3 6 9 5 10 15 11 12 13 3 6 3 5 1
1 5 9 2 3 4 6 7 8 10 11 12 13 14 15 4 1 1 1 1
1 5 9 2 3 4 6 7 8 10 12 14 11 13 15 4 1 1 2 2
1 5 9 2 3 4 6 8 10 7 11 15 12 13 14 4 1 2 4 1
1 5 9 2 4 6 3 7 11 8 10 12 13 14 15 4 2 4 2 1
1 5 9 2 4 6 3 8 13 7 11 15 10 12 14 4 2 5 4 2
1 5 9 2 6 10 3 7 11 4 8 12 13 14 15 4 4 4 4 1
1 6 11 2 3 4 5 7 9 8 10 12 13 14 15 5 1 2 2 1
1 6 11 2 3 4 5 10 15 7 8 9 12 13 14 5 1 5 1 1
1 6 11 2 5 8 3 9 15 4 7 10 12 13 14 5 3 6 3 1
1 6 11 2 7 12 3 4 5 8 9 10 13 14 15 5 5 1 1 1
1 6 11 2 7 12 3 8 13 4 9 14 5 10 15 5 5 5 5 5
1 6 11 2 8 14 3 4 5 7 10 13 9 12 15 5 6 1 3 3
1 7 13 2 3 4 5 8 11 6 10 14 9 12 15 6 1 3 4 3
1 7 13 2 3 4 5 10 15 6 9 12 8 11 14 6 1 5 3 3
1 7 13 2 4 6 3 9 15 5 8 11 10 12 14 6 2 6 3 2
1 7 13 2 6 10 3 4 5 8 11 14 9 12 15 6 4 1 3 3
1 7 13 2 8 14 3 9 15 4 5 6 10 11 12 6 6 6 1 1
1 8 15 2 3 4 5 6 7 9 10 11 12 13 14 7 1 1 1 1
1 8 15 2 3 4 5 6 7 9 11 13 10 12 14 7 1 1 2 2
1 8 15 2 3 4 5 7 9 6 10 14 11 12 13 7 1 2 4 1
1 8 15 2 4 6 3 5 7 9 10 11 12 13 14 7 2 2 1 1
1 8 15 2 4 6 3 5 7 9 11 13 10 12 14 7 2 2 2 2
1 8 15 2 4 6 3 7 11 5 9 13 10 12 14 7 2 4 4 2
1 8 15 2 6 10 3 4 5 7 9 11 12 13 14 7 4 1 2 1
1 8 15 2 6 10 3 5 7 4 9 14 11 12 13 7 4 2 5 1
1 8 15 2 7 12 3 4 5 6 10 14 9 11 13 7 5 1 4 2
As mentioned, I note that the last two sets of sequences are the only sets where each sequence has a unique difference, the last one being the set given in the puzzle itself. They are inverses of one another, with 1 being interchanged with 15, 2 with 14, etc. so that for example (2,7,12) in the last set corresponds to (4,9,14) in the set prior.
DefDbl A-Z
Dim crlf$, seq(5, 3), used(15), ct
Private Sub Form_Load()
Form1.Visible = True
Text1.Text = ""
crlf$ = Chr(13) & Chr(10)
seq(1, 1) = 1: used(1) = 1
addOn 1
Text1.Text = Text1.Text & crlf & ct & " done"
End Sub
Sub addOn(s)
DoEvents
f = seq(s, 1)
maxdiff = (15 - f) / 2
For diff = 1 To maxdiff
s2 = f + diff
s3 = f + 2 * diff
If used(s2) = 0 And used(s3) = 0 Then
seq(s, 2) = s2
seq(s, 3) = s3
used(s2) = 1: used(s3) = 1
If s = 5 Then
For st = 1 To 5
For mbr = 1 To 3
Text1.Text = Text1.Text & Str$(seq(st, mbr))
Next
Text1.Text = Text1.Text & " "
Next
For st = 1 To 5
Text1.Text = Text1.Text & Str(seq(st, 2) - seq(st, 1))
Next
Text1.Text = Text1.Text & crlf
ct = ct + 1
Else
For n = 2 To 15
If used(n) = 0 Then Exit For
Next
seq(s + 1, 1) = n
used(n) = 1
addOn s + 1
used(n) = 0
End If
used(s2) = 0: used(s3) = 0
End If
Next
End Sub
|
Posted by Charlie
on 2018-03-01 15:40:50 |