All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Fibo meets Lucas #1 (Posted on 2018-09-09) Difficulty: 3 of 5
Keeping the Fibonacci rule of adding the latest two to get the next but starting from 2 and 1 (in this order) instead of 0 and 1 for the (ordinary Fibonacci numbers) one defines the series of Lucas Numbers:
L(n) = L(n-1) + L(n-2) for n>1
L(0) = 2
L(1) = 1
Here are some more values of L(n) together with the Fibonacci numbers
for comparison:
F(n):	0	1	1	2	3	5	8	13	21	34	55	...
L(n): 2 1 3 4 7 11 18 29 47 76 123 ...
With the above information in background prove the following formulas:

a. F(n-1)+ F(n+1) = L(n)
b. L(n-1) + L(n+1)= 5*F(n)
c. F(n)* L(n) = F(2n)

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
a and b soln.s | Comment 1 of 2

exploring...

L(0) = F(0)  + 2

L(1) = F(1)

L(2) = L(0) + L(1)

       = F(0) + F(1) + 2

       = F(2) + 2 

L(3) = L(1) + L(2)

       = F(1) + F(2) + 2

       = F(3) + 2

L(4)  = L(2) + L(3)

        = F(2) + 2 + F(3) + 2 

        = F(4) + 4

L(5) = L(3) + L(4)

       = F(3) + 2 + F(4) + 4 

       = F(5) + 6

etc. 

So this becomes our fundamental formula: 

L(n) = F(n) + 2 F(n-1)       (for n>0)

a) Show F(n-1)+ F(n+1) = L(n)

F(n-1) + F(n+1)

= F(n-1) + F(n-1) + F(n)

= 2 F(n-1) + F(n) 

= L(n) 

Q.E.D.

b) Show L(n-1) + L(n+1)= 5*F(n)

L(n-1) + L(n+1)

= F(n-1) + 2 F(n-2) + F(n+1) + 2 F(n)

= F(n) + F(n-2) + F(n+1) + 2 F(n)

= F(n) + F(n-2) + F(n) + F(n-1) + 2 F(n)

= 3 F(n) + 2 F(n)

= 5 F(n) 

Q.E.D.


Edited on September 10, 2018, 10:39 am
  Posted by Steven Lord on 2018-09-09 09:52:01

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information