All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Triangle area / perimeter (Posted on 2019-02-12) Difficulty: 3 of 5
A mathematician wanted to teach his children the value of cooperation, so he told them the following

"I chose a secret triangle for which the lengths of its sides are all integers.

To you my dear son Charlie, I am giving the triangle's perimeter. And to you, my beloved daughter Ariella, I am giving its area.

Since you are both such talented mathematicians, I'm sure that together you can find the lengths of the triangle's sides."

Instead of working together, Charlie and Ariella had the following conversation after their father gave each of them the information he promised.

Charlie: "Alas, I cannot deduce the lengths of the sides from my knowledge of the perimeter."

Ariella: "I do not know the perimeter, but I cannot deduce the lengths of the sides from just knowing the area. Maybe our father is right and we should cooperate after all."

Charlie: "Oh no, no need. Now I know the lengths of the sides."

Ariella: "Well, now I know them as well."

Find the lengths of the triangle's sides and explain the dialogue above.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Way forward | Comment 1 of 2

This is a nice variation on the Sum and Product Problem, a puzzle featured by Martin Gardner in his Scientific American column in 1979 (as I well recall: picture a household of grad students competing to solve it.) It could be argued that this is an even nicer problem, because it seems that no limit on the integers is required for the problem to have to a unique solution, unlike the Sum and Product Problem.

Here, if we call the sides a, b, c, the perimeter p, and the area A, we have two guiding rules:  To make triangles, unique sets of a, b, c must have each side less than  the sum of the other two, and the area A is given by Heron's Formula. 

One perimeter may be the sum of different a, b, c sets, which I call a p's "multiple constructs", and each set, in turn, yields a different A. Likewise, A may be "ambiguous", meaning: obtainable from different perimeters. The statements given by the participants in the puzzle one by one lead to constraints on the correct (p, A) pair. The pair must have these qualities: 

1) p has multiple possible constructs.

2) A is ambiguous. Further, at least two of the p's associated with A each have multiple possible constructs.

3) Of all the constructs of 1), the associated A's are all ambiguous, except one A, which is unambiguous.

4) Of all the p's that are possibly associated with A, only one has both properties 1) and 3) above.

 

A partial list of the ranked multiplicity of A's and of p's is shown below with the associated program. 

 Next step: find a satisfying (p, A) pair!

    a        b       c       p       A

------------------------------

   1     1     1     3    0.43

------------------------------

   1     2     2     5    0.97

------------------------------

   1     3     3     7    1.48

------------------------------

   2     2     2     6    1.73

------------------------------

   1     4     4     9    1.98

   2     2     3     7    1.98

------------------------------

   1     5     5    11    2.49

------------------------------

   2     3     3     8    2.83

------------------------------

   2     3     4     9    2.90

------------------------------

   1     6     6    13    2.99

------------------------------

   1     7     7    15    3.49

------------------------------

   2     4     5    11    3.80

------------------------------

   2     4     4    10    3.87

------------------------------

   3     3     3     9    3.90

------------------------------

   1     8     8    17    3.99

------------------------------

   3     3     5    11    4.15

------------------------------

   3     3     4    10    4.47

------------------------------

   1     9     9    19    4.49

------------------------------

   2     5     6    13    4.68

------------------------------

   2     5     5    12    4.90

------------------------------

   1    10    10    21    4.99

------------------------------

   3     4     6    13    5.33

------------------------------

   1    11    11    23    5.49

------------------------------

   3     4     4    11    5.56

   2     6     7    15    5.56

------------------------------

.

.

.

   a     b     c     A       p

------------------------------

   1     1     1    0.43     3

------------------------------

   1     2     2    0.97     5

------------------------------

   2     2     2    1.73     6

------------------------------

   1     3     3    1.48     7

   2     2     3    1.98     7

------------------------------

   2     3     3    2.83     8

------------------------------

   1     4     4    1.98     9

   2     3     4    2.90     9

   3     3     3    3.90     9

------------------------------

   2     4     4    3.87    10

   3     3     4    4.47    10

------------------------------

   2     4     5    3.80    11

   3     3     5    4.15    11

   1     5     5    2.49    11

   3     4     4    5.56    11

------------------------------

   2     5     5    4.90    12

   3     4     5    6.00    12

   4     4     4    6.93    12

------------------------------

   2     5     6    4.68    13

   1     6     6    2.99    13

   3     4     6    5.33    13

   3     5     5    7.15    13

   4     4     5    7.81    13

------------------------------

   3     5     6    7.48    14

   2     6     6    5.92    14

   4     4     6    7.94    14

   4     5     5    9.17    14


.

.

.


program her

        implicit none

        integer a,b,c,p2,cnt,l(4,1000),dum(4),ii,j,k,oldp

        real area,p,xl(1000),xdum,olda

        cnt=0

        oldp=0

        olda=0

        do a  = 1,20

          do b  = a,20

                do 1 c  = b,20

                if(a.ge.b+c.or.b.ge.a+c.or.c.ge.a+b)goto 1

                cnt=cnt+1

                p2=a+b+c

                p=p2/2.

                area = sqrt(p*(p-a)*(p-b)*(p-c))

                l(1,cnt)=a

                l(2,cnt)=b

                l(3,cnt)=c

                l(4,cnt)=p2

                xl(cnt)=area

1               enddo

            enddo

          enddo


c

c area sort

c

           do j = 1,cnt-1

                do k=j+1,cnt

                   if(xl(j).gt.xl(k))then

                   xdum=xl(j)

                   xl(j)=xl(k)

                   xl(k)=xdum

                        do ii=1,4

                        dum(ii)=l(ii,j)

                        l(ii,j)=l(ii,k)

                        l(ii,k)=dum(ii)

                        enddo

                   endif

                enddo

           enddo


        do k=1,cnt

           if(xl(k).ne.olda)then

           print 111

111        format(30('-'))

           olda=xl(k)

           endif

        print 333, (l(ii,k),ii=1,4),xl(k)

333     format(4(i4,2x),f6.2)

        enddo

        print*

        print*

        print*

c

c perim sort

c

           do j = 1,cnt-1

                do k=j+1,cnt

                   if(l(4,j).gt.l(4,k))then

                   xdum=xl(j)

                   xl(j)=xl(k)

                   xl(k)=xdum

                        do ii=1,4

                        dum(ii)=l(ii,j)

                        l(ii,j)=l(ii,k)

                        l(ii,k)=dum(ii)

                        enddo

                   endif

                enddo

           enddo


        do k=1,cnt

           if(l(4,k).ne.oldp)then

           print 111

           oldp=l(4,k)

           endif

        print 222, (l(ii,k),ii=1,3),xl(k),l(4,k)

222     format(3(i4,2x),f6.2,2x,i4)

        enddo

        end

Edited on February 15, 2019, 11:22 am
  Posted by Steven Lord on 2019-02-13 04:25:23

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information