All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Chacun à son goût ! (Posted on 2019-02-18) Difficulty: 3 of 5
In an "old school" projection booth two goats were munching a celluloid version of "Gone with the wind".
After a while both agreed that the book was definitely better.

Assuming that the quality ratio is 9 (according to my taste) list all possible solutions (19, I believe) of the following alphametic:

STORY/FILM=9 ....... (i)

Rem: 3 solutions out of 19 are zero-free !


d4 Bonus:
Instead of the number 9 select another integer N and define #(N) as the number of distinct solutions of the alphametic (i) with a ratio n.

Solve the alphametic.
List the values of #(N) for N=2,3,4,....8.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solutions, with an extension of the bonus | Comment 1 of 3
The 19 solutions for n = 9 are:

27549/3061
27954/3106
36729/4081
36972/4108
47601/5289
54279/6031
54729/6081
54927/6103
54972/6108
57429/6381 *
58239/6471 *
72369/8041
72549/8061
72936/8104
72954/8106
75069/8341
75249/8361 *
82503/9167
85203/9467

I've marked the three with no 0's with an asterisk to make them easier to find.

Going beyond the requested values of #(N) up to N=8, the counts for all possible integral N are
  
   N  #(N)
   2  32
   3  18
   4  34
   5  51
   6  11
   7  30
   8  76
   9  19
  12  12
  13  24
  14  30
  15  40
  16  17
  17  45
  18  20
  19  15
  20  24
  22  14
  23  16
  24  16
  25  11
  26  15
  27  12
  28   7
  29  13
  30  14
  32   6
  33   4
  34  12
  35   8
  36   2
  37   5
  38   5
  39   4
  40   7
  42   5
  43   4
  44  12
  45   5
  46   2
  47   6
  48   4
  49   3
  50   5
  52   8
  53   7
  54   3
  55   5
  56   3
  57   5
  58   1
  59   2
  62   7
  63   1
  64   1
  65   3
  66   3
  67   2
  68   2
  69   2
  70   2
  72   4
  76   1
  78   1
  79   1
  82   1
  85   1
  92   2
  93   1
  94   1
  
The lowest N with only 1 solution is 58:

92046/1587 = 58

N = 8 has the most solutions, 76:

16584/2073
18456/2307
18760/2345
24568/3071
24856/3107
25408/3176
25496/3187
27608/3451
32568/4071
32856/4107
36712/4589
36728/4591
37208/4651
37512/4689
37528/4691
38016/4752
38120/4765
38152/4769
41896/5237
42968/5371
46312/5789
46328/5791
46712/5839
47136/5892
47328/5916
47368/5921
50184/6273
50728/6341
51024/6378
51072/6384
51832/6479
53928/6741
54312/6789
54328/6791
54712/6839
56184/7023
56248/7031
56328/7041
56824/7103
56832/7104
56984/7123
58104/7263
58416/7302
58496/7312
58912/7364
59328/7416
59368/7421
60184/7523
60248/7531
60328/7541
62504/7813
63152/7894
63528/7941
65072/8134
65392/8174
65432/8179
65704/8213
67152/8394
67320/8415
67352/8419
67512/8439
71456/8932
71536/8942
71624/8953
71632/8954
73248/9156
73264/9158
73456/9182
74528/9316
74568/9321
74816/9352
75328/9416
75368/9421
76184/9523
76248/9531
76328/9541
  
DefDbl A-Z
Dim crlf$, solCt(1000)


Private Sub Form_Load()
 Form1.Visible = True
 
 
 Text1.Text = ""
 crlf = Chr$(13) + Chr$(10)
 
 st$ = "1234567890": h$ = st
 Do
   s = Val(Mid(st, 1, 1))
   t = Val(Mid(st, 2, 1))
   o = Val(Mid(st, 3, 1))
   r = Val(Mid(st, 4, 1))
   y = Val(Mid(st, 5, 1))
   f = Val(Mid(st, 6, 1))
   i = Val(Mid(st, 7, 1))
   l = Val(Mid(st, 8, 1))
   m = Val(Mid(st, 9, 1))
   If s > 0 And f > 0 Then
     story = 10000 * s + 1000 * t + 100 * o + 10 * r + y
     film = 1000 * f + 100 * i + 10 * l + m
     q = story / film
     If q = Int(q) Then
       solCt(q) = solCt(q) + 1
       If q = 9 Then Text1.Text = Text1.Text & story & "/" & film & crlf
     End If
   End If
   DoEvents
   permute st
 Loop Until st = h
 
 For j = 1 To 1000
   If solCt(j) > 0 Then Text1.Text = Text1.Text & mform(j, "###0") & mform(solCt(j), "###0") & crlf
 Next
 
 Text1.Text = Text1.Text & crlf & " done"
  
End Sub  


Function mform$(x, t$)
  a$ = Format$(x, t$)
  If Len(a$) < Len(t$) Then a$ = Space$(Len(t$) - Len(a$)) & a$
  mform$ = a$
End Function


  Posted by Charlie on 2019-02-18 16:43:31
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information