According to Wolfram Alpha, the nine roots add up to
2^(1/9) + 2^(2/9) + 2^(1/3) + 3^(1/9) + 3^(2/9) + 5^(1/9) + 6^(1/9) + 7^(1/9) + 10^(1/9) ~= 10.8618723916856
or with more digits:
10.86187239168559555833510401712566659365709896816772346...
The terms of the sum given ar apparently not aligned with the real portions of the roots. For example 5^(1/9) ~= 1.195813174500402, which is not one of the real portions below.
The approximate roots are:
x ~= 2.2090455318317256593604383
x ~= 0.26505329725893685876037583 - 0.34122374681750815905638328 i
x ~= 0.70579407090012987387086484 - 0.86405670242277285655317631 i
x ~= 1.3809564134053568235954976 - 0.9826415597437514803802414 i
x ~= 1.9746096483625113932605946 - 0.6414095447893572175372549 i
x ~= 0.26505329725893685876037583 + 0.34122374681750815905638328 i
x ~= 0.70579407090012987387086484 + 0.86405670242277285655317631 i
x ~= 1.3809564134053568235954976 + 0.9826415597437514803802414 i
x ~= 1.9746096483625113932605946 + 0.6414095447893572175372549 i
https://drive.google.com/open?id=1y1gSbaduU11cSh4aY6-i2Bb2wzvxQuLP
|
Posted by Charlie
on 2019-04-06 14:25:27 |