All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Shooting submarine on a number line! (Posted on 2019-06-08) Difficulty: 3 of 5
There is an enemy submarine located at an unknown integer somewhere on the number line. The submarine is moving at a constant integer distance per minute (also unknown, and can be positive or negative). Every minute, you can fire a missile at an integer on the number line in an attempt to destroy the submarine.

Is there a strategy to strike the submarine in a finite amount of time?

Assume that you move first and that you can fire missiles at the number line for as long you need to.

No Solution Yet Submitted by Danish Ahmed Khan    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution | Comment 2 of 3 |
Each potential path of the submarine can be described as an arithmetic sequence.  Our missile strategy is then equivalent to creating a sequence that intersects every possible arithmetic sequence.  IE: For any arithmetic sequence a(t) and our missile sequence m(t) there is a value of t where a(t)=m(t).

Let s be the initial term of an arithmetic sequence and d be the common difference.  Then the set of all arithmetic sequences can be put into a 1:1 correspondence with the lattice points on a plane (s,d).  Group the points into subsets based on the metric abs(s)+abs(d). Within each subset order them with the point on the s-axis first and going around counterclockwise.  This gives a sequence starting with (0,0), (1,0), (0,1), (-1,0), (0,-1), (2,0), (1,1), (0,2), (-1,1), (-2,0), (-1,-1), (0,-2), (1,-1), (3,0), (2,1), ....

Now expand each ordered pair into its arithmetic sequence, forming a table:
 t |  (s,d)  | sequence
 1 |  (0,0)  |  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, ...
 2 |  (1,0)  |  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
 3 |  (0,1)  |  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
 4 | (-1,0)  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ...
 5 |  (0,-1) |  0, -1, -2, -3, -4, -5, -6, -7, -8, -9,-10, ...
 6 |  (2,0)  |  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
 7 |  (1,1)  |  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, ...
 8 |  (0,2)  |  0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, ...
 9 | (-1,1)  | -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, ...
10 | (-2, 0) | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, ... 11 | (-1,-1) | -1, -2, -3, -4, -5, -6, -7, -8, -9,-10,-11, ...
etc....

This table, when infinitely extended, maps every possible arithmetic integer sequence in a 1:1 correspondence with the positive integers.  Our missile sequence m(t) is the main diagonal sequence 0, 1, 2, -1, -4, 2, 7, 14, 7, -2, -11, ....

A search on the OEIS finds this is sequence A304587

Edited on June 9, 2019, 1:08 pm
  Posted by Brian Smith on 2019-06-09 12:51:48

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information