All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > General > Word Problems
Unique letters (Posted on 2019-08-08) Difficulty: 3 of 5
There are 25 distinct letters in the grid below.
Try to create the longest word starting by any letter and moving only to the neighboring square (horizontally, vertically or diagonally) without repeating a letter.

A M W Y F      
C K E H J  
I P B L D 
V N G U R
Z X S T O
 


All words are acceptable as long as they appear in a reliable dictionary

See The Solution Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution (spoiler) Comment 1 of 1
Sorting the output of

DefDbl A-Z
Dim crlf$, r, c, psn, w$, grid$(6, 6), good, used(6, 6)

Private Sub Form_Load()
 Text1.Text = ""
 crlf$ = Chr(13) + Chr(10)
 Form1.Visible = True
 DoEvents
 
 For r = 1 To 5
 For c = 1 To 5
   psn = psn + 1
   grid$(r, c) = Mid("amwyfckehjipbldvngurzxsto", psn, 1)
 Next
 Next
 
 
 Open "c:\words\words.txt" For Input As #1
 Do
   Line Input #1, w$
   w = LTrim(RTrim(w))
   If Len(w) > 2 Then
    good = 0
    For r0 = 1 To 5
    For c0 = 1 To 5
      If grid(r0, c0) = Left(w, 1) Then
        For i = 1 To 5
        For j = 1 To 5
          used(i, j) = 0
        Next
        Next
        psn = 1
        r = r0: c = c0
        used(r, c) = 1
        addOn
      End If
    Next
    Next
    
    If good Then
      Text1.Text = Text1.Text & mform(Len(w), "##") & "  " & w & crlf
      If Len(w) > mx Then mx = Len(w)
    End If
   End If
   DoEvents
 Loop Until EOF(1)

 Close 1
  
 Text1.Text = Text1.Text & mx & " done"
End Sub

Sub addOn()
 DoEvents
  For dr = -1 To 1
  For dc = -1 To 1
    If dr <> 0 Or dc <> 0 Then
      newr = r + dr: newc = c + dc
      If used(newr, newc) = 0 Then
        If grid(newr, newc) = Mid(w, psn + 1, 1) Then
          psn = psn + 1
          r = newr: c = newc
          used(r, c) = 1
          
          If psn = Len(w) Then
            good = 1
          Else
            addOn
          End If
          
          used(r, c) = 0
          r = r - dr: c = c - dc
          psn = psn - 1
        End If
      End If
    End If
  Next
  Next
End Sub

Function mform$(x, t$)
  a$ = Format$(x, t$)
  If Len(a$) < Len(t$) Then a$ = Space$(Len(t$) - Len(a$)) & a$
  mform$ = a$
End Function

gives the following list of formable words of at least 3 letters:

 3  bel
 3  bey
 3  bud
 3  bug
 3  bur
 3  bus
 3  but
 3  cam
 3  dub
 3  dug
 3  duo
 3  eld
 3  gul
 3  gut
 3  hem
 3  hep
 3  hew
 3  hey
 3  ick
 3  ins
 3  kep
 3  key
 3  kin
 3  kip
 3  lek
 3  ley
 3  lug
 3  mac
 3  mel
 3  mew
 3  nip
 3  ort
 3  oud
 3  our
 3  out
 3  peh
 3  pew
 3  pic
 3  pin
 3  rot
 3  rub
 3  rug
 3  rut
 3  sub
 3  tor
 3  tub
 3  tug
 3  urd
 3  uts
 3  web
 3  why
 3  wye
 3  yeh
 3  yep
 3  yew
 4  acme
 4  akin
 4  bema
 4  blew
 4  blur
 4  bugs
 4  burd
 4  burl
 4  bust
 4  buts
 4  cake
 4  came
 4  drub
 4  drug
 4  dugs
 4  duro
 4  dust
 4  epic
 4  gley
 4  glut
 4  gust
 4  guts
 4  held
 4  kame
 4  kepi
 4  king
 4  kins
 4  lube
 4  lugs
 4  lust
 4  mack
 4  make
 4  meld
 4  nick
 4  orle
 4  orts
 4  oust
 4  outs
 4  pica
 4  pick
 4  pika
 4  pike
 4  ping
 4  pins
 4  rots
 4  rout
 4  rube
 4  rugs
 4  rule
 4  rust
 4  ruts
 4  snip
 4  stub
 4  stud
 4  surd
 4  tour
 4  trug
 4  tube
 4  tugs
 4  tule
 4  turd
 4  weka
 4  weld
 4  whey
 4  yeld
 5  acing
 5  blurt
 5  bugle
 5  cakey
 5  camel
 5  drugs
 5  eking
 5  gluts
 5  gusto
 5  ingle
 5  kings
 5  pekin
 5  pings
 5  roust
 5  routs
 5  ruble
 5  snick
 5  snipe
 5  stour
 5  torus
 5  trugs
 5  ulema
 6  blurts
 6  burley
 6  caking
 6  macing
 6  making
 6  nickel
 6  pekins
 6  rouble
 6  stroud
 7  makings
 7  trouble
13  troublemaking
14  troublemakings

the largest of which is the 14-letter "troublemakings".


  Posted by Charlie on 2019-08-08 10:31:11
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information