All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Almost a half (Posted on 2020-05-15) Difficulty: 2 of 5
A certain set of positive integers (a,b,c) causes the sum of their reversals (i.e. S=1/a+1/b+1/c) to be the closest to 1/2 without equaling or exceeding it.

Find S.
Explain your method.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution (to tedious to do manually) | Comment 3 of 6 |
First, to explain the method, which makes this answer be that to an Algorithms puzzle:

WLOG, let a < b < c so their reciprocals are in descending order.

Find the smallest a that does not cause 1/a to equal or exceed 1/2, and do the remainder of the calculations described below for this a and each a that's larger than this up through the first one where 1/a + 1/(a+1) + 1/(a+2) is less than 1/2.

For each of those a's, find the smallest b that does not cause 1/a + 1/b to equal or exceed 1/2, and do the next paragraph for each b from this value through the first one where 1/a + 1/b + 1/(b+1) is less than 1/2.

For each such pair (a,b) find the smallest c that does not cause 1/a + 1/b + 1/c to equal or exceed 1/2 (this should be b+1).

Choose the largest among all the 1/a + 1/b + 1/c.

So:

1/3 uses a=3 and the smallest b is 7 that results in the sum of those reciprocals to be smaller than 1/2: 1/3 + 1/7 = 10/21.

The smallest c that allows fitting is 42, but that results in 1/2 exactly: 1/3 + 1/7 + 1/42 = 1/2, so the next c, 43 gives an answer of 1/3 + 1/7 + 1/43  ~= 0.499446290143965

This is too tedious to continue manually, so:

   For a = 1 To 11
      Text6.Text = Text6.Text & a & crlf
      If 1 / a < 1 / 2 Then
        b = a + 1
        Do
            Text6.Text = Text6.Text & a & Str(b) & crlf
            If 1 / a + 1 / b < 1 / 2 Then
                 
                   c = b + 1
                   Do
                    If 1 / a + 1 / b + 1 / c <= 1 / 2 Then
                     
                      Text6.Text = Text6.Text & a & Str(b) & Str(c)
                      Text6.Text = Text6.Text & "    " & 1 / a + 1 / b + 1 / c & crlf
                    
                      DoEvents
                    End If
                    If 1 / a + 1 / b + 1 / c < 1 / 2 Then Exit Do
                    c = c + 1
                   Loop
                 DoEvents
            End If
          b = b + 1
          DoEvents
        Loop Until 1 / a + 1 / b + 1 / (b + 1) < 1 / 2
        DoEvents
       End If
       If 1 / a + 1 / (a + 1) + 1 / (a + 2) < 1 / 2 Then Exit For
       
   Next

results in:

a b c     1/a + 1/b + 1/c
2
3
3 4
3 5
3 6
3 7
3 7 42    0.5
3 7 43    0.499446290143965
3 8
3 8 24    0.5
3 8 25    0.498333333333333
3 9
3 9 18    0.5
3 9 19    0.497076023391813
3 10
3 10 15    0.5
3 10 16    0.495833333333333
3 11
3 11 14    0.495670995670996
4
4 5
4 5 20    0.5
4 5 21    0.497619047619048
4 6
4 6 12    0.5
4 6 13    0.493589743589744
4 7
4 7 10    0.492857142857143
5
5 6
5 6 8    0.491666666666667
6
6 7
6 7 8    0.43452380952381

and indeed

1/3 + 1/7 +1/43 ~= 0.499446290143965, the first arrived at, is the largest without going over 0.5.

The exact value is 451/903.



  Posted by Charlie on 2020-05-15 09:46:18
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information