All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Square Reciprocal Summation (Posted on 2020-08-25) Difficulty: 3 of 5
{3,3,3,3,3,3} is a set of six integers such that the sum of the squares of the reciprocals totals 2/3.
(1/3)^2 + (1/3)^2 + (1/3)^2 + (1/3)^2 + (1/3)^2 + (1/3)^2 = 2/3

Does there exist a set of integers with fewer than 6 members whose sum of the squares of the reciprocals totals 2/3?

Problem inspired by Find the triplets

No Solution Yet Submitted by Brian Smith    
Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution UBASIC solution | Comment 2 of 5 |
(In reply to soln by Steven Lord)

  10     dim d(6)
  20     gosub *addon(1)
  30     end
  40     *addon(wh)
  50      local i,j
  60     if wh=1 then st=2: else st=d(wh-1)
  70     i=st
  80     repeat
  90       tot=tot+1//(i*i)
 100       d(wh)=i
 110       
 120       if tot=2//3 then
 130         :for j=1 to wh:print " ";d(j);:next:print
 140       :else
 150         :if wh<6 and tot<2//3 then gosub *addon(wh+1)
 160       
 170       tot=tot-1//(i*i)
 180       i=i+1
 190     until (6-wh)//(i*i) < 2//3 - tot
 200     return 
 
 finds  that using the squares the reciprocals of 2, 2, 3, 6 and 6 leads to a total of 2/3.

  Posted by Charlie on 2020-08-25 11:22:20
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information