All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math > Calculus
Maximal of a function (Posted on 2020-11-25) Difficulty: 3 of 5
Show that there exists the maximum value of the function f(x, y)=(3xy+1)e-(x2+y2) on R2, then find the value.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts No proof, but approx max found | Comment 1 of 2
a=zeros(200); mx=0;
for x=- .9:.01:.9
    for y=- .9:.01: .9
        v=(3*x*y+1)*exp(-x^2-y^2);
        a(round((x+1)*100),round((y+1)*100))=v;
        if v>mx mx=v; mxx=x; mxy=y; end
    end
end
disp([mx,mxx,mxy])
mx=0;
for x=.4:.0000000001:.41
     v=(3*x*x+1)*exp(-x^2-x^2);
     if v>mx mx=v;mxx=x;
     end
end
disp([mx,mxx])


The max is about 1.07479696586068    for x=y=  0.4082482808

and the same for x=y= - 0.4082482808

  Posted by Charlie on 2020-11-25 14:24:53
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information