All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Conditional pairs (Posted on 2020-12-19) Difficulty: 2 of 5
Find all the pairs of positive numbers such that the last digit of their sum is 3, their difference is a prime number and their product is a perfect square.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution program to find a solution | Comment 3 of 7 |
p=1; diff=0;
while diff<10000
    diff=nextprime(diff+1);
    for s=3:10:100000
       n1=(s-diff)/2;
       if n1==floor(n1) && n1>0
           n2=n1+diff;
           prod=n1*n2;
           sr=round(sqrt(prod));
           if sr*sr==prod
               disp([n1 n2 diff s prod sr])
           end
       end
    end
end


finds only

 n1    n2   diff  sum   prod  square
                               root
  4     9     5    13    36      6
  

Eliminating the need for the sum to end in 3 yields many other results, all with the sum ending in either 1 or 5. 

For example:


  1     4     3     5      4     2
  4     9     5    13     36     6       Our answer with terminal 3 in the sum
  9    16     7    25    144    12
 25    36    11    61    900    30
 36    49    13    85   1764    42
 64    81    17   145   5184    72
 81   100    19   181   8100    90
121   144    23   265  17424   132
196   225    29   421  44100   210
225   256    31   481  57600   240
324   361    37   685 116964   342
400   441    41   841 176400   420

. . .

  Posted by Charlie on 2020-12-19 13:12:05
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information