Let P1,P2,P3 be primes larger than 16.
Then (P1)^12+(P2)^12+(P3)^12-3 is divisible by 2^16-16.
Prove it, or provide a counter-example.
clc
digits 100
syms p1 p2 p3 t t2 c
c=sym(2^16-16)
range=[1,6]
for tr=1:10
r1=randi(range);
p1=nthprime(r1);
r2=randi(range);
p2=nthprime(r2);
r3=randi(range);
p3=nthprime(r3);
t= sym((p1^sym(12)+p2^sym(12)+p3^sym(12)-sym(3)));
t2= simplifyFraction(sym(t/c));
fprintf('%d %d %d\n',p1,p2,p3)
disp(t)
disp(t2)
disp(" ")
end
shows what happens if primes under 16 are used:
Each grouping consists of:
Line 1: the prime values
Line 2: (P1)^12+(P2)^12+(P3)^12-3
Line 3: ((P1)^12+(P2)^12+(P3)^12-3)/(2^16-16)
,fraction (in reduced form).
In all the random instances shown, the quotient is indeed not an integer.
c =
65520
range =
1 6
2 3 7
13841822735
212951119/1008
13 13 2
46596170249055
147924349997/208
13 13 5
46596414385584
46226601573/65
11 2 5
3138672521439
3832322981/80
13 11 13
49734598621680
9867975917/13
7 2 13
23311926413775
518042809195/1456
13 11 11
29574941875920
5868044023/13
11 5 7
3152513804544
1684035152/35
3 11 2
3138428912255
6897645961/144
3 2 2
539630
593/72
When only primes larger than 16 are used, the quotient is always found to be an integer, thus finding no counterexamples--the division always results in an integer:
c =
65520
range =
7 20
61 53 31
3146395541338100862720
48021909971582736
71 17 41
16432246813563414550080
250797417789429404
37 59 61
4440129344542958910480
67767541888628799
23 41 41
45148895225164392480
689085702459774
53 53 59
2761715226752985026160
42150720799038233
29 53 53
982871623296657778320
15001093151658391
23 19 41
22587618239717272560
344743868127553
71 31 47
16526661886533548262240
252238429281647562
29 59 29
1779905047805943654960
27165827957966173
43 53 67
8713937439686845875600
132996603169823655
c =
65520
range =
8 200
1217 167 109
10555697569321349819939295388619816400
161106495258262359889183385052195
1097 541 1021
4321114530668068986013220539512701760
65951076475397878296905075389388
971 193 257
702474901158201433133028405975876240
10721533900460949834142680188887
61 691 929
425077380653636013798482177497201440
6487750009976129636728970963022
577 41 1217
10557059357647546111795029813618276960
161127279573375245906517549047898
569 359 179
1156304672386028302498250534452080
17648117710409467376346925129
719 653 881
243729131475594102482107552838099760
3719919589065844054977221502413
157 383 149
9963232927648115006480360204160
152063994622223977510384008
1021 367 283
1283249237548421350203970132206552960
19585611073693854551342645485448
23 953 563
562210457740920547888838183244264240
8580745692016491878645271417037
A larger number of random tests with primes above 16 also shows no counterexamples.
|
Posted by Charlie
on 2021-01-18 10:24:57 |