All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Differences of the fraction (Posted on 2021-02-20) Difficulty: 3 of 5
The following fractions are written on the board 1/n, 2/(n-1), 3/(n-2), ... , n/1 where n is a natural number. Alice calculated the differences of the neighboring fractions in this row and found among them 10000 fractions of type 1/k (with natural k). Prove that he can find even 5000 more of such these differences.

No Solution Yet Submitted by Danish Ahmed Khan    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts re: A boy named Alice | Comment 5 of 6 |
(In reply to A boy named Alice by Math Man)

Indeed n=30030 = 2*3*5*7*11*13 produces a list of 62 although lower than 39260 = 2*3*5*7*11*17, though this lower number is not found in OEIS A093449. Perhaps all that is needed is a given number of distinct prime factors, all producing the same number of unit fraction differences

for 30030:

 
  715/29315   714/29316         1/41    17/698   1/28618
 1365/28665  1364/28666         1/21   62/1303   1/27363
 1716/28314  1715/28315         2/33    49/809   1/26697
 2080/27950  2079/27951       16/215     9/121   1/26015
 2640/27390  2639/27391         8/83    29/301   1/24983
 2926/27104  2925/27105       19/176    15/139   1/24464
 3081/26949  3080/26950       79/691      4/35   1/24185
 4005/26025  4004/26026     267/1735      2/13   1/22555
 4291/25739  4290/25740     613/3677       1/6   1/22062
 5005/25025  5004/25026          1/5  834/4171   1/20855
 6006/24024  6005/24025          1/4 1201/4805   1/19220
 6370/23660  6369/23661         7/26   193/717   1/18642
 6721/23309  6720/23310       47/163    32/111   1/18093
 6930/23100  6929/23101         3/10  533/1777   1/17770
 7371/22659  7370/22660        27/83    67/206   1/17098
 7645/22385  7644/22386      139/407     14/41   1/16687
 8086/21944  8085/21945      311/844      7/19   1/16036
 8295/21735  8294/21736       79/207     29/76   1/15732
 8646/21384  8645/21385      131/324     19/47   1/15228
 9010/21020  9009/21021     901/2102       3/7   1/14714
10011/20019 10010/20020    3337/6673       1/2   1/13346
10725/19305 10724/19306          5/9  766/1379   1/12411
11011/19019 11010/19020        11/19   367/634   1/12046
11935/18095 11934/18096        31/47   153/232   1/10904
12090/17940 12089/17941        31/46   157/233   1/10718
12376/17654 12375/17655        68/97    75/107   1/10379
12936/17094 12935/17095        28/37   199/263    1/9731
13300/16730 13299/16731      190/239     31/39    1/9321
13651/16379 13650/16380    1241/1489       5/6    1/8934
14301/15729 14300/15730      681/749     10/11    1/8239
15015/15015 15014/15016            1 7507/7508    1/7508
15016/15014 15015/15015    7508/7507         1    1/7507
15730/14300 15729/14301        11/10   749/681    1/6810
16380/13650 16379/13651          6/5 1489/1241    1/6205
16731/13299 16730/13300        39/31   239/190    1/5890
17095/12935 17094/12936      263/199     37/28    1/5572
17655/12375 17654/12376       107/75     97/68    1/5100
17941/12089 17940/12090      233/157     46/31    1/4867
18096/11934 18095/11935      232/153     47/31    1/4743
19020/11010 19019/11011      634/367     19/11    1/4037
19306/10724 19305/10725     1379/766       9/5    1/3830
20020/10010 20019/10011            2 6673/3337    1/3337
21021/9009  21020/9010           7/3  2102/901    1/2703
21385/8645  21384/8646         47/19   324/131    1/2489
21736/8294  21735/8295         76/29    207/79    1/2291
21945/8085  21944/8086          19/7   844/311    1/2177
22386/7644  22385/7645         41/14   407/139    1/1946
22660/7370  22659/7371        206/67     83/27    1/1809
23101/6929  23100/6930      1777/533      10/3    1/1599
23310/6720  23309/6721        111/32    163/47    1/1504
23661/6369  23660/6370       717/193      26/7    1/1351
24025/6005  24024/6006     4805/1201         4    1/1201
25026/5004  25025/5005      4171/834         5     1/834
25740/4290  25739/4291             6  3677/613     1/613
26026/4004  26025/4005          13/2  1735/267     1/534
26950/3080  26949/3081          35/4    691/79     1/316
27105/2925  27104/2926        139/15    176/19     1/285
27391/2639  27390/2640        301/29      83/8     1/232
27951/2079  27950/2080         121/9    215/16     1/144
28315/1715  28314/1716        809/49      33/2      1/98
28666/1364  28665/1365       1303/62        21      1/62
29316/714   29315/715         698/17        41      1/17

for example 165 has 3 prime factors, 3*5*11, and gives 6 = 2^3-2 unit fraction differences.

   45/120      44/121            3/8      4/11      1/88
   55/110      54/111            1/2     18/37      1/74
   66/99       65/100            2/3     13/20      1/60
  100/65       99/66           20/13       3/2      1/26
  111/54      110/55           37/18         2      1/18
  121/44      120/45            11/4       8/3      1/12
  
(for these, the n values quoted are the constant sum of numerator and denominator, not the top of the range of numerator (or denominator)).

So of course the smallest in each case is the primorial to which Math Man refers.

  Posted by Charlie on 2021-02-21 14:07:43
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information