All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Differences of the fraction (Posted on 2021-02-20) Difficulty: 3 of 5
The following fractions are written on the board 1/n, 2/(n-1), 3/(n-2), ... , n/1 where n is a natural number. Alice calculated the differences of the neighboring fractions in this row and found among them 10000 fractions of type 1/k (with natural k). Prove that he can find even 5000 more of such these differences.

No Solution Yet Submitted by Danish Ahmed Khan    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
The current hypothesis Comment 6 of 6 |
When n, the sum of each numerator/denominator pair (1 more than the n used in the puzzle), is factored into primes, count the number of different primes used, k. The number of differences of successive fractions in the series that are unit fractions is 2^k - 2.

An example is n = 2*2*2*3*3*11*47 = 37224. There are 4 different primes in its factorization so there will be 2^4 - 2 = 14 pairs of adjacent fractions in the series whose difference is a unit fraction:


       37224
     2     2     2     3     3    11    47
   
 1881/35343  1880/35344       19/357      5/94   1/33558
 5688/31536  5687/31537       79/438     11/61   1/26718
 8272/28952  8271/28953          2/7  919/3217   1/22519
10153/27071 10152/27072     923/2461       3/8   1/19688
13113/24111 13112/24112        31/57   149/274   1/15618
13960/23264 13959/23265    1745/2908       3/5   1/14540
15840/21384 15839/21385        20/27   337/455   1/12285
21385/15839 21384/15840      455/337     27/20    1/6740
23265/13959 23264/13960          5/3 2908/1745    1/5235
24112/13112 24111/13113      274/149     57/31    1/4619
27072/10152 27071/10153          8/3  2461/923    1/2769
28953/8271  28952/8272      3217/919       7/2    1/1838
31537/5687  31536/5688         61/11    438/79     1/869
35344/1880  35343/1881          94/5    357/19      1/95


Edited on February 21, 2021, 6:22 pm
  Posted by Charlie on 2021-02-21 18:13:22

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information