All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Planar factor graphs (Posted on 2021-08-16) Difficulty: 3 of 5
A factor graph is a graph where each node is numbered and if x is a factor of y, then x and y are connected. A graph is planar if it can be drawn on paper with no lines crossing.

1) Create a planar factor graph with nodes numbered from 2 through 23.

2a) [easy] Show that no planar factor graph is possible with nodes numbered 2 through 32.
2b) [hard] Show that no planar factor graph is possible with nodes numbered 2 through 24.

3) If the nodes are numbered 1 though n, find the largest planar factor graph and prove that n+1 is impossible.

Tip: A finite graph is planar if and only if it does not contain as a subgraph either the complete graph K5 or the complete bipartite graph K3,3.

No Solution Yet Submitted by Jer    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
part 3 by computer | Comment 4 of 16 |
(In reply to re: Setting an upper limit for 3 by Charlie)


highNumber=16;
numbers=[1:highNumber];
setsOf5=nchoosek(numbers,5);
for i=1:length(setsOf5)
   k5=true;
   setOf5=setsOf5(i,:);
   for j=1:4
       for k=j+1:5
          if connected(setOf5(j),setOf5(k))==false
              k5=false;
              break
          end
       end
      if k5==false
         break 
      end
   end
   if k5
      disp('k5')
      disp(setOf5)
   end
end

setsOf3=nchoosek(numbers,3);
comb=length(setsOf3);
ptrs=[1:comb];
for i=1:comb-1
    for j=i+1:comb
       s1=ptrs(i); s2=ptrs(j);
       set1=setsOf3(s1,:);
       set2=setsOf3(s2,:);
       k33=true;
       for k=1:3
           for l=1:3
              if connected(set1(k),set2(l))==false
                 k33=false;
                 break 
              end
           end
           if k33==false
              break 
           end
       end
       if k33
          disp('k3,3')
          disp(set1)
          disp(set2)
       end
    end
end

   function c=connected(n1,n2)
      m=max([n1,n2]); n=min([n1,n2]);
      if mod(m,n)==0 && m~=n
         c=true;
      else
          c=false;
      end
   end

   With highNumber = 16 the program does find both a K(5) and a K(3,3):

k5
     1     2     4     8    16
k3,3
     1     2     4
     8    12    16

With highNumber = 15, neither type of K is found.

So the maximum is in fact 15.

Edited on August 17, 2021, 11:59 am
  Posted by Charlie on 2021-08-17 11:50:07

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information