All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Ninety Seven and Divisibility Nuance (Posted on 2021-12-12) Difficulty: 2 of 5
Determine the minimum value of a positive integer N such that:
o N has the form: 97.......97, and:
o N is divisible by 99

No Solution Yet Submitted by K Sengupta    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 1 of 10
To be divisible by 99, the number must be divisible by 11 and by 9. Divisibility by 11 entails that the difference between the sum of the odd positions and the sum of the even positions must be a multiple of 11. Divisibility by 9 entails that the sum of all the digits must be a multiple of 9.

Each 97 in the representation of the number entails a difference of 2 in the respective modular sum, either up or down, and 2 is relatively prime to each of 11 and 9. Therefore, the number must consist of 99 repetitions of 97.

Verification:

syms n
n=sym(97);
for i=2:200
   n=n*100+sym(97);
   if mod(n,99) == 0
      disp([i n]) 
   end
end

shows the first two occurrences of divisibility by 99:

>> ninetysevenAndDivisibilityNuance
[99, 
979797979797979797979797979797979797979797979797979797979797979797
979797979797979797979797979797979797979797979797979797979797979797
979797979797979797979797979797979797979797979797979797979797979797
]
[198, 
979797979797979797979797979797979797979797979797979797979797979797
979797979797979797979797979797979797979797979797979797979797979797
979797979797979797979797979797979797979797979797979797979797979797
979797979797979797979797979797979797979797979797979797979797979797
979797979797979797979797979797979797979797979797979797979797979797
979797979797979797979797979797979797979797979797979797979797979797
]
>> 

  Posted by Charlie on 2021-12-12 08:42:40
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information