All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Straight Up Inequality (Posted on 2021-12-14) Difficulty: 2 of 5
Let x, y be non-negative numbers with

sqrt(1-x^2/4)+sqrt(1-y^2/16)=3/2.

Find the maximum value of xy.

No Solution Yet Submitted by Danish Ahmed Khan    
Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer guided solution | Comment 1 of 2
First solve for y in terms of x:

>> syms x y
>> eq=sqrt(1-x^2/4)+sqrt(1-y^2/16)==3/2
eq =
(1 - x^2/4)^(1/2) + (1 - y^2/16)^(1/2) == 3/2
>> solve(eq,y)
Warning: Solutions are only valid under certain conditions. To include parameters
and conditions in the solution, specify the 'ReturnConditions' value as 'true'. 
> In sym/solve>warnIfParams (line 478)
In sym/solve (line 357) 
ans =
-8*(x^2/16 + (3*(1 - x^2/4)^(1/2))/4 - 9/16)^(1/2)
 8*(x^2/16 + (3*(1 - x^2/4)^(1/2))/4 - 9/16)^(1/2)
 
Taking the positive case, tabulate and narrow down: 
 
 
 clearvars, clc
 xy=0;
 for x=0:.001:4
     prev=xy;
     y= 8*(x^2/16 + (3*(1 - x^2/4)^(1/2))/4 - 9/16)^(1/2);
     xy=x*y;
     if isreal(xy)
       disp([x xy xy-prev])
     end
end

ultimately gets narrowed down (via where xy - prev changes sign) to 

clearvars, clc
xy=0;
for x= 1.32287565
    prev=xy;
    y= (8)*(x^2/16 + (3*(1 - x^2/4)^(1/2))/4 - 9/16)^(1/2);
    xy=x*y;
    if isreal(xy)
      disp([(x) y (xy) (xy-prev)])
    end
end
 
1.32287565          2.64575132212918            3.5             3.5 

Wolfram Alpha suggests sqrt(7)/2 for 1.32287565.

If that's true so that x = sqrt(7)/2, then y = sqrt(7) ~=  2.645751311064591. In any case, maximum xy = 3.5 = 7/2.

  Posted by Charlie on 2021-12-14 11:07:53
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information