All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Sum Cubes and Fourth Powers (Posted on 2022-02-02) Difficulty: 3 of 5
x and y are two distinct positive integers such that:

(i) Their sum of cubes is a perfect square, and:
(ii) Their sum of fourth powers is a perfect cube.

Find the minimum value of x+y

See The Solution Submitted by K Sengupta    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 2 of 4 |
for tot=3:10000
   for x=1:floor(tot/2)
       y=tot-x;
       cubes=x^3+y^3;
       sr=round(sqrt(cubes));
       if sr*sr==cubes
          fourths=x^4+y^4;
          cr=round(fourths^(1/3));
          if cr^3==fourths
              fprintf('%5d %5d %12d %7d %20d %5d ',x,y,cubes,sr,fourths,cr)
          end
       end
   end
end

finds

   x     y      sum of     square           sum of     cube
                 cubes      root        fourth powers  root
                            
   32    32        65536     256              2097152   128 
  289   578    217238121   14739         118587876497  4913 
 2048  2048  17179869184  131072       35184372088832 32768 

In the first case x and y are not distinct, so that the minimum x+y is 289 + 578 = 867.

Edited on February 2, 2022, 11:26 am
  Posted by Charlie on 2022-02-02 11:23:58

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information