All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Arithmetic Derivative (Posted on 2022-06-10) Difficulty: 4 of 5
Consider the following (simplified) definition of the "Arithmetic Derivative" for n in positive integers:
D(0) = D(1) = 0
D(prime) = 1
D(ab) = D(a)*b + D(b)*a

Examples:
D(7) = 1 because 7 is prime.
D(30) = D(5*6) = D(5)*6 + 5*D(6) = 1*6 + 5*D(2*3)
= 6 + 5*[D(2)*3+2*D(3)] = 6 + 5*5 = 31, so ...
D(30) = 31
D(58) = 31 (More than one integer can have the same Arithmetic Derivative.)

(1). Find n and D(n) (n up to 5 digits) such that D(n) is the largest.
(2). Find n and D(n) (n up to 5 digits and not prime) such that the ratio D(n)/n is the largest.
(3). Which 4-digit Palindrome is the Arithmetic Derivative of the most 4-digit positive integers, and list them.
(4). For what set of n is n = D(n)

No Solution Yet Submitted by Larry    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: bits and pieces Comment 7 of 7 |
(In reply to bits and pieces by Larry)

changing a section of code to


pal=[]; maxpal=0; 
for j=1:upto
  if isPalin(d(j)) && d(j) ~= 1
    f=find(d==d(j));
    ctpal=length(f);
    pal(end+1)=d(j);
    disp([j d(j) ctpal])
    if ctpal>maxpal
      maxpal=ctpal;
    end
  end
end
disp(' ')
pal=sort(pal);
pal'
disp(' ')
for j=1:upto
  if isPalin(d(j)) && d(j) ~= 1
    f=find(d==d(j));
    ctpal=length(f);
    pal(end+1)=d(j);
    if ctpal==maxpal
      disp([j d(j) ctpal])
    end
  end
end
disp(' ')

produces a list of n, D and maxtimes

        2382        1991          13
        2830        1991          13
        3406        1991          13
        3502        1991          13
        4137        1991          13
        4947        1991          13
        5217        1991          13
        5705        1991          13
        6955        1991          13
        7505        1991          13
        7705        1991          13
        7955        1991          13
        9821        1991          13

for n up to 9999

and

         532         636          29
        3155         636          29
       10523         636          29
       11723         636          29
       14099         636          29
       17603         636          29
       22163         636          29
       25499         636          29
       34043         636          29
       38123         636          29
       41099         636          29
       44003         636          29
       48683         636          29
       59099         636          29
       64643         636          29
       68363         636          29
       72563         636          29
       75203         636          29
       80099         636          29
       81803         636          29
       85499         636          29
       86483         636          29
       92843         636          29
       94883         636          29
       97403         636          29
       98099         636          29
       98723         636          29
       99443         636          29
       99899         636          29

for the up to 99999 version

  Posted by Charlie on 2022-06-10 15:50:51
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information