All about
flooble
|
fun stuff
|
Get a free chatterbox
|
Free JavaScript
|
Avatars
perplexus
dot
info
Home
>
General
Don't be confused (
Posted on 2016-11-14
)
If x satisfy the equation x^4 - x^2 + 1 = 0 , find the value of x^5 + 1/x
No Solution Yet
Submitted by
Danish Ahmed Khan
No Rating
Comments: (
Back to comment list
| You must be logged in to post comments.
)
Puzzle Solution
Comment 5 of 5 |
Sunsttitute: y=x^2
Noe, we know that:
(y^2 - y+1)(y+1)= y^3+1
But, y^2-y+1
= x^4-x^2+1
=0
Accordingly, y^3+1=0, so that:
x^6+1=0
Dividing both sides by x, we obtain:
x^5 +1/x=0
Posted by
K Sengupta
on 2022-07-06 00:02:14
Please log in:
Login:
Password:
Remember me:
Sign up!
|
Forgot password
Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ
|
About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
blackjack
flooble's webmaster puzzle
Copyright © 2002 - 2024 by
Animus Pactum Consulting
. All rights reserved.
Privacy Information