All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Height of a Mountain (Posted on 2019-07-31) Difficulty: 3 of 5
A surveyor on a flat plain sees a mountain in the distance. The angle of elevation to the peak is 5 degrees. The surveyor drives 15 miles east. From there, the angle of elevation is 6 degrees. Driving an additional 10 miles east, the angle of elevation is 4 degrees. How high is the mountain?

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Puzzle Solution Comment 2 of 2 |
Let the location of the mountain be at (0,0,0).
The height of the mountain is m miles(say).
When taking the first measurement, the surveyor is at (x, y, 0) (say)
-> Then, at the time of the second measurement, the surveyor is at (x+15, y, 0)
-> At the time of the third measurement, the surveyor is at (x+25, y, 0)

Accordingly,  we must have:
     m
-------------------- = tan(5)
V(x^2+y^2)

    m
------------------------------ = tan(6) 
V{(x+15)^2 + y^2}

      m
------------------------------ = tan(4)
V{(x+25)^2+y^2}

Thus, 
                          m^2
x^2+y^2  =  ------------------
                        tan^2(5)
                                         
                                               m^2
x^2 +30x +225 + y^2 = -----------------------
                                             tan^2(6)

                                              m^2
x^2 + 50x+625 + y^2 = --------------------
                                           tan^2(4)

So, we have:

                                     1                  1
30x+225 =  m^2 { --------------  -   -------------- }
                                tan^2(6)       tan^2(5)

                                      1                1
20x + 400 = m^2 { --------------  -  --------------}
                                 tan^2(4)      tan^2(6)

Multiplying  the second equation by 3 and subtracting twice the first equation from it, we must have:
   
                             3               3                    2                   2
750 = m^2 { --------------- - ---------------  - ---------------  + --------------- }
                       tan^2(4)    tan^2(6)       tan^2(6)       tan^2(5)
                         
                            3                   2                5
       = m^2 {  ----------------  + -------------  -  ------------ }
                       tan^2(4)      tan^2(5)     tan^2(6)
      
       ~= m^2 * 422.203702606426

=> m^2 ~= 1.77693706094857

=> m ~= 1.33281420539206

Consequently,  the required height of the mountain is approximately 1.3328142 miles which is nearly 1.3328142*5280 = 7037.259 feet.

Edited on July 15, 2022, 2:20 am
  Posted by K Sengupta on 2022-07-15 01:57:56

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information