All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > General
Squares in a cross (Posted on 2006-05-10) Difficulty: 3 of 5
In the diagram formed of twenty O’s below, in how many ways may four be selected such that they form a square? What is the least number of O’s that may be removed such that none of these squares remains intact?
O O
O O
O O O O O O
O O O O O O
O O
O O
Note: the horizontal and vertical spacing should be equal.

See The Solution Submitted by Jer    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Puzzle Solution Comment 6 of 6 |
(I) A total of 21 squares can be constituted as follows:

Dimension                # Squares
-----------------               ------------------
 V13 x V13                       2
  V8 x V8                          4                
  V5 x V5                          2
  V2 x V2                          4
    1x1                               9

(II) We need to obviate a minimum of 6 circles such that none of these 21 squares remain intact.
         Each of the obviated squares is marked with a hash (#) as follows:

                             o  o
                             #  o     
                   #  #   o  o  o  o
                   o  o   o  #  #  o
                             o  o 
                             o  #

Edited on July 25, 2022, 12:11 am
  Posted by K Sengupta on 2022-07-24 23:49:50

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information