All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Cubic Diophantine Conclusion II (Posted on 2022-08-13) Difficulty: 3 of 5
Each of A, B and C is a positive integer, with A less than B, that satisfies this equation:
                A3+B3=19C3
Determine all triplets (A,B,C) with A+B+C under 100,000

*** As an extra challenge only, solve this puzzle without using a computer program/spreadsheet aided method.

No Solution Yet Submitted by K Sengupta    
Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 2
clearvars,clc
sets=[];
fid=fopen('c:\vb5 projects\flooble\cubic diophantine II.txt','w');
ct=0;
for a=1:50000
  for b=a+1:100000-a
    tst=(a^3+b^3)/19;
    c=round(tst^(1/3));
    if a+b+c>=100000
      break
    end
    if c^3==tst
      newset=[a b];
      good=true;
      for i=1:size(sets,1)
        q=unique(newset./sets(i,:));
        if length(q)==1
          if q==round(q)
            good=false;
          end
        end
      end
      if good
        fprintf(fid,'%8d %8d %8d\n',a,b,c);
        fprintf('%8d %8d %8d\n',a,b,c);
        sets=[sets; newset];
        ct=ct+1;
      end
    end
  end
end
fclose(fid);

finds all such sets where a+b+c < 100,000, but report only those sets that are not integral multiples of a previously reported set.

These were the only fundamental sets. All others were integral multiples of one of these; any such multiple will work:

     a        b        c
       1        8        3  accounts for floor(100000/(1+8+3)) = 8333 solutions
       3        5        2  accounts for 10000-1 = 9999 solutions
                              as 30000 + 50000 + 20000 is not under 100000
      33       92       35  accounts for 625 - 1 = 624 solutions, same reasoning
    9613    27323    10386  accounts for 2 solutions below a+b+c = 100000

That's a total of 18958 solutions, counting the integral multiples.

  Posted by Charlie on 2022-08-13 11:41:12
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information