All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
A Change of Mind (Posted on 2003-06-18) Difficulty: 3 of 5
I went into the bank to get change for a dollar. The teller said, "How do you want the change, buddy? I mean, there are 292 ways involving pennies, nickels, dimes, quarters, and half-dollars to give change for a dollar!"

Since I didn't like her attitude, I didn't answer her question. I simply said, "Well, I certainly don't want any pennies."

How many ways are there for her to give me change now?

(Note: Americans, always shunning simplicity have chosen to name their coins in the following easy-to-remember manner: Penny=1 cent, Nickel=5 cents, Dime=10 cents, Quarter=25 cents, Half Dollar=50 cents)

See The Solution Submitted by DJ    
Rating: 4.4615 (13 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution re: Challenge Accepted (Solution) | Comment 13 of 14 |
(In reply to Challenge by DJ)

I know this is an old problem, but it is a classic that happened to be on my mind recently.


Lets build up the number of ways recursively, one denomination at a time, starting with the smallest and working up. Also I'm only going to look at multiples of 5 since that is what is actually important. (A spreadsheet is very useful to make the calculations quickly.) 

Trivially there is exactly one way to make some quantity using just nickels.
Total:    5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Nickels:  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1
Then lets add the dimes.  Either there is a dime in the change or there is not.  In the first case we just add one dime to the amount of change from 10 cents less, otherwise we are just taking the nickels only change.
More mathematically, If D(n) is the number of ways to make change out of dimes and nickels then D(n) = D(n-10)+1.
Total:    5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Nickels:  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1   1
N+Dimes: 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11
Now onto quarters. By a similar argument as with the dimes we can define Q(n) as the way to make change out of quarters, dimes and nickels, where Q(n) = Q(n-25) + D(n).
Total:         5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Nickels:  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1   1
N+Dimes:  1  2  2  3  3  4  4  5  5  6  6  7  7  8  8  9  9 10 10  11
N+D+Quarters: 1 2 2 3 4 5 6 7 8 10 11 13 14 16 18 20 22 24 26 29
Then the half-dollars. Same as before we can define H(n) as the way to make change out of half-dollars, quarters, dimes and nickels, where H(n) = H(n-25) + Q(n).
Total:          5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Nickels:        1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1   1
N+Dimes:        1  2  2  3  3  4  4  5  5  6  6  7  7  8  8  9  9 10 10  11
N+D+Quarters:  1  2  2  3  4  5  6  7  8 10 11 13 14 16 18 20 22 24 26  29
N+D+Q+Half-Ds: 1 2 2 3 4 5 6 7 8 11 12 15 16 19 22 25 28 31 34 40
And there at the end of the last row is our answer 40 ways. 
Just for fun, lets do this again with the pennies! Just the final table:
Total:            5 10 15 20 25 30 35 40 45 50 55 60 65  70  75  80  85  90  95 100
Pennies:        1  1  1  1  1  1  1  1  1  1  1  1  1   1  1  1  1  1   1  1 
P+Nickels:        2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
P+N+Dimes: 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121
P+N+D+Quarters:   2 4 6 9 13 18 24 31 39 49 60 73 87 103 121 141 163 187 213 242
P+N+D+Q+Half-Ds:  2 4 6 9 13 18 24 31 39 50 62 77 93 112 134 159 187 218 252 292
And now we have confirmed the 292 ways stated in the flavor text.

  Posted by Brian Smith on 2022-10-22 16:27:45
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information