Simplify the expression:
√[sin4x+4cos2x] - √[cos4x+4sin2x]
Source: AMC12 2002
√[sin(x)^4 + 4cos(x)^2] - √[cos(x)^4 + 4sin(x)^2]
s = sin(x)
c = cos(x)
√[s^4 + 4c^2] - √[c^4 + 4s^2]
√[s^4 + 4(1 - s^2)] - √[c^4 + 4(1 - c^2)]
√[s^4 - 4s^2 + 4] - √[c^4 - 4c^2 + 4]
√[s^2 - 2]^2 - √[c^2 - 2]^2
(s^2 - 2) - (c^2 - 2)
s^2 - c^2
All of the following are simplifications of the original.
(sin(x))^2 - (cos(x))^2
2*(sin(x))^2 - 1
cos(2x) <-- the most simplified
|
Posted by Larry
on 2023-04-16 08:11:53 |