All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Cryptarithm Crossed Integer Constant Illation (Posted on 2023-04-22) Difficulty: 3 of 5
Each of a, b, and c is a different base ten digit and n is a positive integer such that:

ab2+c2=ac2+cb2=n
For example:
272+12=212+172=730

Determine the total number of values of the positive integer constant n less than 2023, such that we will have valid values of a,b, and c satisfying the abovementioned condition.

***** No number can contain any leading zero.

See The Solution Submitted by K Sengupta    
Rating: 4.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Computer solution | Comment 1 of 5
Program finds only 3 solutions:
a b c    n
2 7 1 730
3 4 1 1157
4 3 1 1850

----------------
def f(a,b,c):
    return (10*a+b)**2 + c**2
def g(a,b,c):
    return (10*a+c)**2 + (10*c+b)**2

ansList = []

for a in range(0,10):
    for b in range(0,10):
        if a == b:
            continue
        for c in range(0,10):
            if a == c or b == c:
                continue
            gg = g(a,b,c)
            if gg > 2023:
                continue
            ff = f(a,b,c)
            if ff > 2023:
                continue
            if ff == gg:
                if ff not in ansList and ff < 2024:
                    ansList.append(ff)
                    print(a,b,c,ff)
                continue
print(len(ansList))


  Posted by Larry on 2023-04-22 06:40:44
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information