All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Golden Substitution (Posted on 2023-06-27) Difficulty: 3 of 5
Given a polynomial P(x)=x4+3x2-9x+1. Calculate P(a2+a+1) where

a=∛[(1+√5)/2]+∛[(1-√5)/2]

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts computer ev Comment 1 of 1
a1=((1+sqrt(5))/2)^(1/3)
a2=(abs(1-sqrt(5))/2)^(1/3)*sign(1-sqrt(5))
a=a1+a2
x=(a^2+a+1)
p=x^4+3*x^2-9*x+1

produces what is presumably wanted:

a =
         0.322185354626085
x =
          1.42598875736162
p =
         -1.59867276653908

alternatively the critical line could be

a2=(nthroot(1-sqrt(5))/2,3)
         
Without the absolute value and sign functions, or using the nthroot function, taking a negative number to the 1/3 power results in a complex cube root:

a1=((1+sqrt(5))/2)^(1/3)
a2=((1-sqrt(5))/2)^(1/3)
a=a1+a2
x=(a^2+a+1)
p=x^4+3*x^2-9*x+1

a =
           1.59988481774495 +     0.737680128975117i
x =
             4.615344275111 +      3.09808660637397i
p =
          -686.277403993008 +      727.277075162423i
 

  Posted by Charlie on 2023-06-27 13:18:55
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information