Final answers:
f(n) = 1/n!! where !! is the double factorial (odd numbers)
Also expressible as a Functional equation:
f(n+1) = f(n)/(2n-1)
journey to the solution:
a, b, b^2/(a+2b), ...
Spreadsheet results
1
1
0.333333333333333
0.0666666666666667
0.00952380952380952
0.00105820105820106
9.62000962000962E-05
Try a formula for the difference :
b-a;
b^2/(a+2b) - b = b^2/(a+2b) - b(a+2b)/(a+2b)
= (b^2 - ab - 2b^2)/(a+2b) = -(ab + b^2)/(a+2b)
= -b(a + b)/(a+2b)
Not much help.
Look at ratio from one term to the next:
n n-th term Ratio f(n-1)/f(n)
0 1
1 1 1
2 0.333333333333333 3
3 0.0666666666666667 5
4 0.00952380952380952 7
5 0.00105820105820106 9
6 9.62000962000962E-05 11
7 7.4000074000074E-06 13
8 4.9333382666716E-07 15
9 2.90196368627741E-08 17
10 1.52734930856706E-09 19
11 7.27309194555742E-11 21
12 3.16221388937279E-12 23
13 1.26488555574912E-13 25
14 4.68476131758932E-15 27
The ratio of the n-th term to the (n+1)st term is: 2n+1
The ratio of the n-th term to the (n-1)st term is: 1/(2n-1)
Define eoF(n) = every other Factorial(n).
eoF(n) = (2n-1)*(2n-3)*(2n-5)* ... * 1
f(n) = 1/eoF(n)
It turns out, this is the definition of the
double factorial (for odd numbers), so the formula becomes:
f(n) = 1/n!!
a short program confirms
----------------
def eoF(n):
""" the every other factorial """
ans = 1
for i in range(1,2*n + 1,2):
ans = ans * i
return ans
for i in range(10):
print(i, 1/eoF(i))
|
Posted by Larry
on 2023-07-24 10:04:12 |