All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Derive a formula (Posted on 2023-07-27) Difficulty: 2 of 5
Given
a+b+c=0 and abc=4

Evaluate S=a^3+b^3+c^3

See The Solution Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Algebraic Solution Comment 3 of 3 |
(a+b+c)^3 = a^3 + b^3 + c^3  
            + 3(a^2(b+c) + b^2(a+c) + c^2(a+b))
            + 6 abc
Given a+b+c = 0 and abc = 4, we have
  0  = a^3 + b^3 + c^3  
     + 3(a^2(-a) + b^2(-b) + c^2(-c))
     + 6 * 4

  0  = a^3 + b^3 + c^3  
     - 3(a^3 + b^3 + c^3)
     + 24
2(a^3 + b^3 + c^3) = 24
a^3 + b^3 + c^3 = 12

  Posted by Larry on 2023-07-27 09:23:56
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information