(a+b+c)^3 = a^3 + b^3 + c^3
+ 3(a^2(b+c) + b^2(a+c) + c^2(a+b))
+ 6 abc
Given a+b+c = 0 and abc = 4, we have
0 = a^3 + b^3 + c^3
+ 3(a^2(-a) + b^2(-b) + c^2(-c))
+ 6 * 4
0 = a^3 + b^3 + c^3
- 3(a^3 + b^3 + c^3)
+ 24
2(a^3 + b^3 + c^3) = 24
a^3 + b^3 + c^3 = 12
|
Posted by Larry
on 2023-07-27 09:23:56 |