All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Fractional Form Quickie (Posted on 2023-09-04) Difficulty: 2 of 5
Using only p&p, determine the simplest fractional form of this expression:
3333373 - 3333263 
------------------
3333373 + 6666633 

See The Solution Submitted by K Sengupta    
Rating: 4.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Analytic solution Comment 2 of 2 |
The difference or sum of two cubes can be factored.
Numerator:  (333337 - 333326)(333337^2 + (333337*333326) + 333326^2)
Denominator:  (333337 + 666663)(333337^2 - (333337*666663) + 666663^2)

Numerator:  11 * (333337^2 + (333337*333326) + 333326^2)
Denominator:  1,000,000 * (333337^2 - (333337*666663) + 666663^2)

Claim - both of these expressions are equal:
     (333337^2 + (333337*333326) + 333326^2)
    =(333337^2 - (333337*666663) + 666663^2)
Call these expressions  a^2 + ab + b^2 = a^2 - ac + c^2
ab + b^2 =  - ac + c^2
ab + ac + b^2 - c^2 = 0
a(b+c) + (b-c)(b+c) = 0
(a+b-c)(b+c) = 0
In general, if a,b,c are all positive then b+c cannot be zero.
In our case, a+b-c = 333337 + 333326 - 666663 does equal zero.

So the answer is 11/1,000,000

  Posted by Larry on 2023-09-04 10:33:02
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information