All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Quadratic and Cubic Expression Quickie (Posted on 2023-10-17) Difficulty: 3 of 5
Suppose x and y are two real numbers with x ≠ y, such that
y = 1+x+x2, and:
x = 1+y+y2.

Determine the value of x3+y3.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 2
syms x y
s=solve(@(x,y)y==1+x+x^2 , x==1+y+y^2)
xv=s.x, yv=s.y
xv.^3+yv.^3
eval(ans)

finds that x and y cannot be real as stated

       x                  y
             -i                   -i
              i                    i
- 1 + sqrt(2)*i      - 1 - sqrt(2)*i
- 1 - sqrt(2)*i      - 1 + sqrt(2)*i

though the last two solutions offer the real sum, 10.

>> quadraticAndCubic
s = 
  struct with fields:
    x: [4×1 sym]
    y: [4×1 sym]
xv =
             -1i
              1i
- 1 + 2^(1/2)*1i
- 1 - 2^(1/2)*1i
yv =
             -1i
              1i
- 1 - 2^(1/2)*1i
- 1 + 2^(1/2)*1i
ans =
                                       2i
                                      -2i
(- 1 + 2^(1/2)*1i)^3 - (1 + 2^(1/2)*1i)^3
(- 1 + 2^(1/2)*1i)^3 - (1 + 2^(1/2)*1i)^3
ans =
                          0 +                     2i
                          0 -                     2i
                         10 +                     0i
                         10 +                     0i
>> 

The x and y pairs solving the equations:

       x                  y
             -1i                   -1i
              1i                    1i
- 1 + 2^(1/2)*1i      - 1 - 2^(1/2)*1i
- 1 - 2^(1/2)*1i      - 1 + 2^(1/2)*1i


The sum of the cubes

                                       2i
                                      -2i
(- 1 + 2^(1/2)*1i)^3 - (1 + 2^(1/2)*1i)^3
(- 1 + 2^(1/2)*1i)^3 - (1 + 2^(1/2)*1i)^3

or

2i
-2i
10
10

The sum of the cubes, if real, is 10.

But x and y cannot be real.

  Posted by Charlie on 2023-10-17 17:50:22
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information