All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
The Perfect Cube (Posted on 2003-08-12) Difficulty: 3 of 5
Can both n + 3 and n^2 + 3 be perfect cubes if n is an integer ?

See The Solution Submitted by Jayaram S    
Rating: 4.1667 (6 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts More Ideas | Comment 6 of 21 |
Looking at the one's place:

0 0 0
1 1 1
2 4 8
3 9 7
4 6 4
5 5 5
6 6 6
7 9 3
8 4 2
9 1 9

Since the ones place of n^2 + 3 can end in any digit, it comes down to the squares. Since squares can only end in a certain way, this means that n^2+3 must be the cube of something ending in 2, 3, 4, 7, 8, 9.
  Posted by Gamer on 2003-08-12 22:34:19
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information