All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Quadratic Function Determination (Posted on 2024-02-02) Difficulty: 3 of 5
Determine a quadratic function f(x) that satisfies this equation:
f(x)*f(x-1)= f(x^2)

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 1 of 4
f(x) = Ax^2 + Bx + C
f(x-1) = A(x-1)^2 + B(x-1) + C
      = Ax^2 + (-2A+B)x + (A-B+C)
f(x^2) = Ax^4 + Bx^2 + C

f(x)*f(x-1) = (Ax^2 + Bx + C)*(Ax^2 + (B-2A)x + (A-B+C))
  = A^2x^4 + (AB-2A^2+AB)x^3 + (A^2-AB+AC + B^2-2AB + AC)x^2 + (AB-B^2+CB+CB-2AC)x + (AC-BC+C^2)
  = A^2x^4 + 2A(B-A)x^3 + (A^2-3AB+2AC+B^2)x^2 + (AB-B^2+2CB-2AC)x + (AC-BC+C^2)

A^2 = A   so A=1, since A=0 would mean:  not quadratic
2A(B-A) = 0  so B=A=1
A^2-3AB+2AC+B^2 = B  (let A=B=1)
1 - 3 + 2C + 1 = B = 1
 so C=1
A=B=C=1

f(x) = x^2 + x + 1
f(x-1) = x^2 - 2x + 1 + x - 1 + 1 = x^2 - x + 1
f(x^2) = x^4 + x^2 + 1

(x^2 + x + 1) * (x^2 - x + 1) = x^4 + x^2 + 1  checks

  Posted by Larry on 2024-02-02 10:43:32
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information