All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Loggy Triangle? (Posted on 2024-02-08) Difficulty: 3 of 5
Is it possible to solve for x, where ln(x), ln(2x) and ln(3x) form a legitimate right triangle? From: Artofmathematics.com

See The Solution Submitted by Kenny M    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution | Comment 3 of 4 |
To be the side of a triangle, ln(x) must be a positive number, so x>1
let y = ln(x)
a,b,c are y, ln(2)+y, ln(3)+y

For easier typing, let M = ln(2) and N = ln(3), note N>M

y^2 + (M+y)^2 = (N+y)^2
y^2 + M^2 + 2My + y^2 = N^2 + 2Ny + y^2
y^2 - 2(N - M)y - (N^2 - M^2) = 0
y = (N - M) ± sqrt[(N - M)^2 + (N^2 - M^2)]
y = (N - M) ± sqrt[(N^2 - 2MN + M^2 + N^2 - M^2]
y = (N - M) ± √2*√(N^2 - MN)

plug in M = ln(2) = 0.6931471805599453
        N = ln(3) = 1.0986122886681098

y1 = (N - M) + √2*√(N^2 - MN)
   = 1.349338987812199

y2 = (N - M) - √2*√(N^2 - MN)
   = -0.5384087715958701    REJECT since y must be > 0

ln(x) = y1 = 1.349338987812199
x = e^y1 = e^1.349338987812199
x = 3.854876567948182

           Side Lengths
ln(x)  = ln(3.854876567948182)
ln(2x) = ln(7.7097531358516)
ln(3x) = ln(11.5646297037774)

 side lengths       squares of sides
1.34933898780639   1.82071570401438
2.04248616836634   4.17174974796781
2.4479512764745    5.99246545199315

1.82071570401438 + 4.17174974796781 = 5.99246545198219
which is accurate to eleven decimal places

Precise version of x:
x = e ^ ((ln(3)-ln(2)) + √2*√(ln(3)^2 - ln(2)ln(3)))

  Posted by Larry on 2024-02-08 08:42:23
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information