All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Find Last 3 Digits (Posted on 2024-02-20) Difficulty: 3 of 5
Find the last three digits of the product of the positive roots of:

3√(2021)* Xlog2021X = X3

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer-aided solution | Comment 1 of 4
Wolfram Alpha finds the solutions

x =˜ 2.519407255517746057

x =˜ 3.276427517989203604 *×10^9

After asking WA for more digits, in Matlab:

>> x1=sym(2.519407255517746056766510572536581168853543846177713379873997078370430992634480)
x1 =
5673200788572123 / 2251799813685248

>> x2=sym(3276427517.989203604273896738706379238389746141550490419356385797904605017251962)
x2 =
3435583261103047/1048576



>> double(x1*x2)
ans =
                8254655261
                
>> vpa(x1*x2)
ans =
8254655261.0000002420284485774112       

Ignoring rounding error and assuming an integral value, 
the last 3 digits are 261.

Later, being more careful to put sym where needed to keep accuracy:


>> x = sym(exp((-1/sym(6) *(sqrt(sym(69)) - 9)* (log(sym(43)) + log(sym(47))))))
x =
exp(-(69^(1/2)/6 - 3/2)*(log(43) + log(47)))

>> y= sym(exp(1/sym(6)* (9 + sqrt(sym(69))) *(log(sym(43)) + log(sym(47)))))
y =
exp((69^(1/2)/6 + 3/2)*(log(43) + log(47)))

>> x*y
ans =
exp((69^(1/2)/6 + 3/2)*(log(43) + log(47)))*exp(-(69^(1/2)/6 - 3/2)*(log(43) + log(47)))

>> vpa(x*y)
ans =
8254655261.0

verifying 261.

Edited on February 20, 2024, 9:35 am
  Posted by Charlie on 2024-02-20 09:12:15

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information