Remember
“Unique and restricted” ? ,b (pid=13696)
There I have asked for a restricted answer to an alphametic puzzle and got a set of many words.
Now I have fiddled with a similar equation and again will allow only answers not using any of the letters appearing in “TWELVE”.
TWELVE + TWELVE = (Oompha, grubby, payoff, droppy ….et al)
Your task is to find an answer to my puzzle such that adding the numerical values of all 6 letters in the word chosen by you (a long list of candidate solutions) will be closest to 24.
Start your chase.
Good luck!
(In reply to
re(2): stats by Charlie)
I noted that my count of 137 numerical sum did not match my previous stats which added to 136. I show here all eligible sums (after removing those that duplicated digits in TWELVE, or were sums of two numbers that didn't have the pattern TWELVE).
noPatTWELVE =
872784
dupDigits =
27049
good =
167
aabbcb 338858
aabbcb 556616
aabbcb 556696
aabbcb 558818
aabbcb 558838
aabbcb 772292
aabcbd 335854
aabccb 338558
aabccb 558338
aabccb 772112
aabcdb 330970
aabcdb 558138
aabcdb 558618
aabcdb 770290
aabcdb 772912
aabcde 771290
abacba 272972
abacba 616916
abacba 656156
abacba 656956
abacba 818718
abacba 838538
abacba 858158
abacba 858358
abacbd 535834
abacca 292772
abacca 616556
abacca 696116
abacca 696556
abacca 818558
abacca 838558
abacca 858338
abacca 878118
abacda 616956
abacda 696156
abacda 818538
abacda 818658
abacda 858138
abacda 858618
abacde 373092
abacde 535814
abbacd 655614
abbcdb 566146
abbcdb 722902
abbcdb 788128
abbcdb 922702
abbcde 277096
abbcde 655814
abcacd 615654
abcadb 345384
abcadd 385344
abcbac 358538
abcbac 538358
abcbac 712172
abcbdc 912172
abcbdc 930370
abcbdc 972712
abccbc 358858
abccbc 538838
abccbc 718818
abccbc 916616
abccbc 956656
abccbc 972272
abccdc 538818
abccdc 618858
abccdc 658818
abccdc 956616
abcdac 370930
abcdac 538158
abcdac 712972
abcdbc 270970
abcdbc 416716
abcdbc 418718
abcdbc 658158
abcdbc 712812
abcdbc 716416
abcdbc 718418
abcdbc 812712
abcdbc 970270
abcdbe 729028
abcdbe 971270
abcdcc 546166
abcdcc 702922
abcdcc 728188
abcdcc 902722
abcdce 297076
abcdce 615854
abcdce 973032
abcddc 290770
abcddc 476116
abcddc 478118
abcddc 618558
abcddc 872112
abcddc 912772
abcddc 970330
abcddc 972112
abcdde 709228
abcdeb 923702
abcdeb 967026
abcdec 546186
abcdec 586146
abcdec 702962
abcdec 762902
abcdec 902762
abcdec 962702
abcded 907626
abcdee 903722
aabbacb 1144164
aabbacb 1144184
aabbacb 1166146
aabbacb 1188128
aabbcdb 1188728
aabcacc 1128188
aabcacc 1146166
aabcacc 1164144
aabcacc 1184144
aabcadc 1146186
aabcadc 1186146
aabccac 1134414
aabccac 1138818
aabcdac 1138418
aabcdcc 1128788
abacbdc 1614654
abacbdc 1812872
abaccac 1314414
abaccac 1318818
abaccdc 1218878
abaccdc 1416656
abacdac 1218718
abacdac 1318418
abacdac 1812712
abacdec 1418538
abacdec 1418658
abacdec 1814534
abacdec 1814654
abbcacc 1446166
abbcacc 1664144
abbcadc 1446186
abcbacb 1464164
abcbacb 1646146
abcbadb 1464184
abccadc 1344184
abccadc 1588128
abcdaad 1278118
abcdaad 1872112
abcdacd 1846146
abcdadd 1384144
abcdadd 1528188
abcdadd 1864144
abcdaed 1458138
abcdaed 1854134
abcdbad 1654614
abcdbad 1872812
abcddad 1278818
abcddad 1358818
abcddad 1456616
abcddad 1538818
abcddbd 1538858
abcddcd 1358858
abcdead 1358418
abcdead 1458618
abcdead 1538418
abcdead 1854614
abcdecd 1072972
abcdecd 1270970
abcdeed 1092772
abcdeed 1290770
The pattern in each case is based on only the total line and so starts with a rather than f. Note indeed no 6 different digit sum is among the valid possibilities, numerically without regard to the availability of words with such a pattern.
Edited on April 26, 2024, 10:59 am
Edited on April 26, 2024, 11:04 am
|
Posted by Charlie
on 2024-04-26 10:47:42 |