Method 2
----------------
Let a/b = p
Then, by the given conditions:
p+1/p =13/6
--> 6(p^2+1) =13p
--> 6p^2-13p+6 =0
--> 6p^2-9p -4p+6 =0
--> 3p(2p-3) -2(2p-3) =0
--> (2p-3)(3p-2) =0
--> p =3/2, 2/3
If p= 3/2
--> a/b = 3/2
--> (a+b)/(a-b) = (3+2)/(3-2) (By componendo and dividendo)
--> (a+b)/(a-b) = 5/1
--> |(a + b)/(a - b)| =5
If a/b = 2/3
--> (a+b)/(a-b) = 5/-1
--> (a+b) /(a-b) = -5/1
--> |(a + b)/(a - b)| =5
Therefore, |(a + b)/(a - b)| =5
Consequently, |a + b)/(a - b)| =5
Edited on May 20, 2024, 7:38 am