All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Square-sum fraction (Posted on 2024-06-04) Difficulty: 2 of 5
If x2/y2 + y2/x2 = 254, then find the value of x5/y5 + y5/x5.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 1 of 4
(x^2/y^2 + y^2/x^2) = 254      ***

x/y + y/x = k
x^2/y^2 + 2 + y^2/x^2 = k^2
(x/y + y/x)^2 = 254+2 = 256
(x/y + y/x) = 16                         ***

(x/y + y/x) * (x^2/y^2 + y^2/x^2) = 16 * 254 = 4,064
    = (x^3/y^3 + y^3/x^3) + (x/y + y/x)
(x^3/y^3 + y^3/x^3) = 4,064 - (x/y + y/x) = 4,048
(x^3/y^3 + y^3/x^3) = 4,048    ***

x^2/y^2 + y^2/x^2 = 254
x^4/y^4 + 2 + y^4/x^4 = 254^2
(x^4/y^4 + y^4/x^4) = 254^2 - 2 = 64,514
(x^4/y^4 + y^4/x^4) = 64,514   ***

(x/y + y/x) * (x^4/y^4 + y^4/x^4) = 16 * 64,514
    = (x^5/y^5 + y^5/x^5) + (x^3/y^3 + y^3/x^3) 
(x^5/y^5 + y^5/x^5) =  16 * 64,514 - (x^3/y^3 + y^3/x^3)
(x^5/y^5 + y^5/x^5) = 1,028,176

  Posted by Larry on 2024-06-04 20:22:13
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information