All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math > Calculus
Divide by 2 indefinitely, get result (Posted on 2024-06-11) Difficulty: 3 of 5
A student John starts with the familiar series 1 + 1/2 + 1/4 + 1/8 + . . . .

He then takes the average of each adjacent pair of terms and inserts it between the terms to obtain the new series 1 + 3/4 + 1/2 + 3/8 + 1/4 + . . . .

He divides this by two, because there are now twice as many terms as before. That gives

1/2 + 3/8 + 1/4 + 3/16 + 1/8 + ...

He repeats the process indefinitely. For example, the next pair of steps gives

1/2 + 7/16 + 3/8 + 5/16 + 1/4 + 7/32 + 3/16 + 5/32 + 1/8 + ...

then

1/4 + 7/32 + 3/16 + 5/32 + 1/8 + 7/64 + 3/32 + 5/64 + 1/16 + ...

What exact limit will the series approach?

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 1 of 4
ser=sym(1); term=sym(1);
for i=1:50
  term=term/2;
  ser=[ser term];
end
for iter=1:10
  avgs=(ser(1:end-1)+ser(2:end))/2;
  stack=[ser;avgs 0];
  newser=reshape(stack,[1,size(stack,1)*size(stack,2)]);
  % disp(newser(1:10))
  fprintf('%s + ',newser(1:9))
  fprintf('%s\n',newser(10))
  ser=newser(1:2*length(ser)-1)/2;
  % disp(ser(1:10))
  fprintf('%s + ',ser(1:9))
  fprintf('%s\n',ser(10))

  fprintf('%s %f %s\n\n',[sym(eval(sum(ser)))   sum(eval(ser))  sym(eval(sum(ser)))-3/2])
end

In the groupings below, the first line gives the result of interposing the means between previously successive terms. The second line shows the result of halving each term. In each case, only the first 10 terms are shown.

The third line specifies the sum of the infinite series after that halving, first as a fraction and then the decimal. The last item on that line shows the difference between the sum and 1.5. For each successive iteration, this difference is halved, showing the limit is 3/2 or 1.5.

1 + 3/4 + 1/2 + 3/8 + 1/4 + 3/16 + 1/8 + 3/32 + 1/16 + 3/64
1/2 + 3/8 + 1/4 + 3/16 + 1/8 + 3/32 + 1/16 + 3/64 + 1/32 + 3/128
7/4 1.750000 1/4
1/2 + 7/16 + 3/8 + 5/16 + 1/4 + 7/32 + 3/16 + 5/32 + 1/8 + 7/64
1/4 + 7/32 + 3/16 + 5/32 + 1/8 + 7/64 + 3/32 + 5/64 + 1/16 + 7/128
13/8 1.625000 1/8
1/4 + 15/64 + 7/32 + 13/64 + 3/16 + 11/64 + 5/32 + 9/64 + 1/8 + 15/128
1/8 + 15/128 + 7/64 + 13/128 + 3/32 + 11/128 + 5/64 + 9/128 + 1/16 + 15/256
25/16 1.562500 1/16
1/8 + 31/256 + 15/128 + 29/256 + 7/64 + 27/256 + 13/128 + 25/256 + 3/32 + 23/256
1/16 + 31/512 + 15/256 + 29/512 + 7/128 + 27/512 + 13/256 + 25/512 + 3/64 + 23/512
49/32 1.531250 1/32
1/16 + 63/1024 + 31/512 + 61/1024 + 15/256 + 59/1024 + 29/512 + 57/1024 + 7/128 + 55/1024
1/32 + 63/2048 + 31/1024 + 61/2048 + 15/512 + 59/2048 + 29/1024 + 57/2048 + 7/256 + 55/2048
97/64 1.515625 1/64
1/32 + 127/4096 + 63/2048 + 125/4096 + 31/1024 + 123/4096 + 61/2048 + 121/4096 + 15/512 + 119/4096
1/64 + 127/8192 + 63/4096 + 125/8192 + 31/2048 + 123/8192 + 61/4096 + 121/8192 + 15/1024 + 119/8192
193/128 1.507812 1/128
1/64 + 255/16384 + 127/8192 + 253/16384 + 63/4096 + 251/16384 + 125/8192 + 249/16384 + 31/2048 + 247/16384
1/128 + 255/32768 + 127/16384 + 253/32768 + 63/8192 + 251/32768 + 125/16384 + 249/32768 + 31/4096 + 247/32768
385/256 1.503906 1/256
1/128 + 511/65536 + 255/32768 + 509/65536 + 127/16384 + 507/65536 + 253/32768 + 505/65536 + 63/8192 + 503/65536
1/256 + 511/131072 + 255/65536 + 509/131072 + 127/32768 + 507/131072 + 253/65536 + 505/131072 + 63/16384 + 503/131072
769/512 1.501953 1/512
1/256 + 1023/262144 + 511/131072 + 1021/262144 + 255/65536 + 1019/262144 + 509/131072 + 1017/262144 + 127/32768 + 1015/262144
1/512 + 1023/524288 + 511/262144 + 1021/524288 + 255/131072 + 1019/524288 + 509/262144 + 1017/524288 + 127/65536 + 1015/524288
1537/1024 1.500977 1/1024
1/512 + 2047/1048576 + 1023/524288 + 2045/1048576 + 511/262144 + 2043/1048576 + 1021/524288 + 2041/1048576 + 255/131072 + 2039/1048576
1/1024 + 2047/2097152 + 1023/1048576 + 2045/2097152 + 511/524288 + 2043/2097152 + 1021/1048576 + 2041/2097152 + 255/262144 + 2039/2097152
3073/2048 1.500488 1/2048


  Posted by Charlie on 2024-06-11 21:47:00
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information