All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Rationalize the Denominator (Posted on 2024-07-10) Difficulty: 3 of 5
Rationalize the denominator:
√2 + √3 + √6
-------------------------
√2 + √3 + √6 + √8 + √16

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution | Comment 1 of 4
The denominator can be factored, and the numerator is almost factorizable.
sqrt(2)+sqrt(3)+sqrt(6)
= [1+sqrt(2)+sqrt(3)+sqrt(2)*sqrt(3)] - 1
= [1+sqrt(2)]*[1+sqrt(3)] - 1

sqrt(2)+sqrt(3)+sqrt(6)+sqrt(8)+sqrt(16)
= 3*sqrt(2)+4+sqrt(3)+sqrt(6)
= 3*sqrt(2)+3*sqrt(2)*sqrt(2)+sqrt(3)+sqrt(3)*sqrt(2)
= [3*sqrt(2)+sqrt(3)]*[1+sqrt(2)]
= [sqrt(3)]*[1+sqrt(6)]*[1+sqrt(2)]

Then the whole fraction can be written as
[1+sqrt(2)]*[1+sqrt(3)] - 1
---------------------------------------
[sqrt(3)]*[1+sqrt(6)]*[1+sqrt(2)]

To keep things clear I will rationalize the denominator one factor at a time. First multiply the numerator and denominator by sqrt(2)-1
sqrt(3)-sqrt(2)
------------------------
[sqrt(3)]*[1+sqrt(6)]

Then multiply the numerator and denominator by sqrt(6)-1
3*sqrt(2)-2*sqrt(3)-sqrt(3)+sqrt(2)
----------------------------------------
5*sqrt(3)

   4*sqrt(2)-3*sqrt(3)
= ----------------------
   5*sqrt(3)

Then finish with cleaning up sqrt(3) for a final answer of
(4*sqrt(6) - 9) / 15.

  Posted by Brian Smith on 2024-07-10 09:58:39
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information