x + 1/x = 1
Can solve as quadratic:
x^2 - x + 1 = 0
x = (1 ± √3 i)/2
Or rearrange to get x^2 = x-1
and use to reduce the power.
then (x+1)^2 --> x^2 + 2x + 1 = 3x
So now find 3x + 1/(3x)
Choose x = (1 + √3 i)/2
Find 3(1 + √3 i)/2 + 2/3(1 + √3 i)
= 3(1 + √3 i)/2 + 2(1 - √3 i)/3(1 + √3 i)(1 - √3 i)
= 3(1 + √3 i)/2 + 2(1 - √3 i)/3(1+3)
= 3(1 + √3 i)/2 + (1 - √3 i)/6
= 5/3 + (4/3)√3 i
Although double checking on Wolfram Alpha gives a different result which, when I simplified it, worked out to the conjugate of my answer. So either I made a math error or Wolfram Alpha did.
|
Posted by Larry
on 2024-08-14 08:22:08 |