All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Coefficients (Posted on 2024-08-16) Difficulty: 3 of 5
Let P(x) be a polynomial with non-negative integer coefficients such that P(0)=33, P(1)=40, and P(9)=60000. Find P(2).

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Analytic and Computer solutions | Comment 1 of 3
Analytic
9^5 = 59049 so poly cannot have degree > 5
Sum of coefficients is 40
The last coefficient is 33

Let poly be ax^5 + bx^4 + cx^3 + dx^2 + ex + 33
a can only be 0 or 1, the other coefficients can be any from 0 to 9.
But sum(a,b,c,d,e) = 7

If a=0, the largest f(9) could be would be if b=7 and c=d=e=0.   But this falls far short of 60000.  The largest f(9) could be is 45960.
So a=1
Noting that 9^5 = 59049 and the final term is 33, the remaining terms (when x=9) must sum to:
    60000 - 33 - 9^5 = 918
Since 9^4 = 6561, coefficient b must be zero.
So c+d+e = 6
Since 9^3 = 729, coefficient c must be zero or one, but if c=0, then the largest f(9) could be is 59568.
So c = 1
So d+e = 5

We have x^5 + x^3 + dx^2 + ex + 33
with d and e temporarily set to 0, f(9) = 59811
We need 189 more.
81d + 9e = 189
and d + e = 5
 9d + 9e = 45
 72d = 144
 d=2 and e=3
Hence the polynomial:
P(x) = x^5 + x^3 + 2x^2 + 3x + 33
P(2) = 87

-----
Computer

def f(x,a,b,c,d,e):
    return a*x**5 + b*x**4 + c*x**3 + d*x**2 + e*x + 33

for a in range(2):
    for b in range(10):
        if a+b > 7:
            continue
        for c in range(10):
            if a+b+c > 7:
                continue
            for d in range(10):
                if a+b+c+d > 7:
                    continue
                for e in range(10):
                    if a+b+c+d+e != 7:
                        continue
                    if f(9,a,b,c,d,e) != 60000:
                        continue
                    print(f(0,a,b,c,d,e))
                    print(f(1,a,b,c,d,e))
                    print(f(2,a,b,c,d,e))
                    print(f(9,a,b,c,d,e))
                    print(a,b,c,d,e)

Output:
33
40
87
60000
1 0 1 2 3

  Posted by Larry on 2024-08-16 12:20:02
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information