Given that:
A√A + B√B = 85
A√B + B√A = 86
Find the value of A+B.
Let x=√A any y=√B; x,y >= 0
Looking for value of x^2 + y^2
x^3 + y^3 = (x+y)(x^2 - xy + y^2) = 85
x^2y + xy^2 = (x+y)(xy) = 86
(x+y)^3 = (x^3 + y^3) + 3xy(x+y)
(x+y)^3 = 85 + 3*86 = 343 = 7^3
x+y = 7
(x^2 - xy + y^2) = 85/7
(xy) = 86/7
x^2 + y^2 = 85/7 + xy
x^2 + y^2 = 85/7 + 86/7
x^2 + y^2 = 171/7
A + B = 171/7
|
Posted by Larry
on 2024-10-23 13:00:46 |