Let f be a real valued function defined on all real numbers. Given that:
f(xy + 1) = f(x)f(y) − f(y) − x + 2
for all x, y and f(0) = 1
Find f(x).
Let (x,y) = (0,0)
Then f(1) = f(0)*f(0) - f(0) - 0 + 2
f(1) = 1*1 - 1 - 0 + 2
f(1) = 2
Now let (x,y) = (x,0)
Then f(1) = f(x)*f(0) - f(0) - x + 2
2 = f(x)*1 - 1 - x + 2
2 = f(x) - x + 1
f(x) = x+1
Check:
f(xy+1) = f(x)f(y) − f(y) − x + 2
(xy+1) + 1 = (x+1)*(y+1) - (y+1) - x + 2
xy + 2 = xy + x + y + 1 - x - y + 1
xy + 2 = xy + 2