Compute the smallest positive integer k such that the fraction
(7k+100)/(5k-3)
is reducible.
for k=1:1000
n=7*k+100;
d=5*k-3;
if gcd(n,d)>1
disp([k,n,d,gcd(n,d)])
end
end
k numerator denminator GCD
209 1563 1042 521
730 5210 3647 521
The smallest k is 209.
|
Posted by Charlie
on 2024-11-17 13:06:14 |