
Home > General
Define my profile (Posted on 2020-04-01) |
|
I am a 370 17250.
To find out what it means, solve :
war*peace=whatever
No Solution Yet
|
Submitted by Ady TZIDON
|
Rating: 4.0000 (1 votes)
|
|
Solution
|
| Comment 6 of 7 |
|
@ geometry dash lite: Hello, I think I can give you solution: Given the equation for the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>A:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>A</mi><mn>2</mn></msup><mo>=</mo><mi>p</mi><mi>A</mi><mo>+</mo><mi>q</mi><mi>A</mi><mo>+</mo><mi>r</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">A^2 = p A + q A + r I</annotation></semantics></math>A2=pA+qA+rI
We can rewrite this as:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>A</mi><mn>2</mn></msup><mo>−</mo><mo stretchy="false">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">)</mo><mi>A</mi><mo>−</mo><mi>r</mi><mi>I</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">A^2 - (p + q)A - rI = 0</annotation></semantics></math>A2−(p+q)A−rI=0
This can be interpreted as a quadratic matrix equation. Let's denote <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo>=</mo><mi>p</mi><mo>+</mo><mi>q</mi></mrow><annotation encoding="application/x-tex">c = p + q</annotation></semantics></math>c=p+q, so we have:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>A</mi><mn>2</mn></msup><mo>−</mo><mi>c</mi><mi>A</mi><mo>−</mo><mi>r</mi><mi>I</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">A^2 - cA - rI = 0</annotation></semantics></math>A2−cA−rI=0
We can treat this as a characteristic polynomial of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>A:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mi>c</mi><mi>x</mi><mo>−</mo><mi>r</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x^2 - cx - r = 0</annotation></semantics></math>x2−cx−r=0
To find the determinant <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mo>−</mo><mi>I</mi><msup><mi mathvariant="normal">∣</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">|A - I|^{-1}</annotation></semantics></math>∣A−I∣−1 (assuming it exists), we first need to determine the eigenvalues of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>A. The eigenvalues <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>λ of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>A satisfy the characteristic polynomial:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>λ</mi><mn>2</mn></msup><mo>−</mo><mi>c</mi><mi>λ</mi><mo>−</mo><mi>r</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\lambda^2 - c\lambda - r = 0</annotation></semantics></math>λ2−cλ−r=0
Using the quadratic formula, the eigenvalues are given by:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>λ</mi><mrow><mn>1</mn><mo separator="true">,</mo><mn>2</mn></mrow></msub><mo>=</mo><mfrac><mrow><mi>c</mi><mo>±</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">\lambda_{1,2} = \frac{c \pm \sqrt{c^2 + 4r}}{2}</annotation></semantics></math>λ1,2=2c±c2+4r<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"></path></svg>
Next, we are interested in <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mo>−</mo><mi>I</mi><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">|A - I|</annotation></semantics></math>∣A−I∣. The eigenvalues of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>−</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">A - I</annotation></semantics></math>A−I are <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>λ</mi><mi>i</mi></msub><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\lambda_i - 1</annotation></semantics></math>λi−1 for each eigenvalue <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>λ</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\lambda_i</annotation></semantics></math>λi of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>A. Therefore, the eigenvalues of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>−</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">A - I</annotation></semantics></math>A−I are:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>λ</mi><mn>1</mn></msub><mo>−</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>c</mi><mo>+</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\lambda_{1} - 1 = \frac{c + \sqrt{c^2 + 4r}}{2} - 1</annotation></semantics></math>λ1−1=2c+c2+4r<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"></path></svg>−1
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>λ</mi><mn>2</mn></msub><mo>−</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>c</mi><mo>−</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\lambda_{2} - 1 = \frac{c - \sqrt{c^2 + 4r}}{2} - 1</annotation></semantics></math>λ2−1=2c−c2+4r<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"></path></svg>−1
The determinant <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mo>−</mo><mi>I</mi><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">|A - I|</annotation></semantics></math>∣A−I∣ can be computed as the product of the eigenvalues of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>−</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">A - I</annotation></semantics></math>A−I:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mo>−</mo><mi>I</mi><mi mathvariant="normal">∣</mi><mo>=</mo><mrow><mo fence="true">(</mo><mfrac><mrow><mi>c</mi><mo>+</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn><mo fence="true">)</mo></mrow><mrow><mo fence="true">(</mo><mfrac><mrow><mi>c</mi><mo>−</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">|A - I| = \left( \frac{c + \sqrt{c^2 + 4r}}{2} - 1 \right) \left( \frac{c - \sqrt{c^2 + 4r}}{2} - 1 \right)</annotation></semantics></math>∣A−I∣=(2c+c2+4r<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"></path></svg>−1)(2c−c2+4r<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"></path></svg>−1)
Now, simplifying each term:
-
First Eigenvalue:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mrow><mi>c</mi><mo>+</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>c</mi><mo>−</mo><mn>2</mn><mo>+</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">\frac{c + \sqrt{c^2 + 4r}}{2} - 1 = \frac{c - 2 + \sqrt{c^2 + 4r}}{2}</annotation></semantics></math>2c+c2+4r<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"></path></svg>−1=2c−2+c2+4r<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"></path></svg>
-
Second Eigenvalue:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mrow><mi>c</mi><mo>−</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>c</mi><mo>−</mo><mn>2</mn><mo>−</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">\frac{c - \sqrt{c^2 + 4r}}{2} - 1 = \frac{c - 2 - \sqrt{c^2 + 4r}}{2}</annotation></semantics></math>2c−c2+4r<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"></path></svg>−1=2c−2−c2+4r<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"></path></svg>
Thus, we can combine these to find <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mo>−</mo><mi>I</mi><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">|A - I|</annotation></semantics></math>∣A−I∣:
<math xmlns="http://www.w3.org/1998/Math/MathM
|
 |
Please log in:
Forums (2)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|