All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > General
Define my profile (Posted on 2020-04-01) Difficulty: 3 of 5
I am a 370 17250.

To find out what it means, solve :

war*peace=whatever

No Solution Yet Submitted by Ady TZIDON    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution | Comment 6 of 7 |

@ geometry dash lite: Hello, I think I can give you solution:

Given the equation for the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>A</mi><mn>2</mn></msup><mo>=</mo><mi>p</mi><mi>A</mi><mo>+</mo><mi>q</mi><mi>A</mi><mo>+</mo><mi>r</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">A^2 = p A + q A + r I</annotation></semantics></math>

We can rewrite this as:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>A</mi><mn>2</mn></msup><mo>−</mo><mo stretchy="false">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">)</mo><mi>A</mi><mo>−</mo><mi>r</mi><mi>I</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">A^2 - (p + q)A - rI = 0</annotation></semantics></math>

This can be interpreted as a quadratic matrix equation. Let's denote <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo>=</mo><mi>p</mi><mo>+</mo><mi>q</mi></mrow><annotation encoding="application/x-tex">c = p + q</annotation></semantics></math>, so we have:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>A</mi><mn>2</mn></msup><mo>−</mo><mi>c</mi><mi>A</mi><mo>−</mo><mi>r</mi><mi>I</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">A^2 - cA - rI = 0</annotation></semantics></math>

We can treat this as a characteristic polynomial of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mi>c</mi><mi>x</mi><mo>−</mo><mi>r</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x^2 - cx - r = 0</annotation></semantics></math>

To find the determinant <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mo>−</mo><mi>I</mi><msup><mi mathvariant="normal">∣</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">|A - I|^{-1}</annotation></semantics></math> (assuming it exists), we first need to determine the eigenvalues of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>. The eigenvalues <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> satisfy the characteristic polynomial:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>λ</mi><mn>2</mn></msup><mo>−</mo><mi>c</mi><mi>λ</mi><mo>−</mo><mi>r</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\lambda^2 - c\lambda - r = 0</annotation></semantics></math>

Using the quadratic formula, the eigenvalues are given by:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>λ</mi><mrow><mn>1</mn><mo separator="true">,</mo><mn>2</mn></mrow></msub><mo>=</mo><mfrac><mrow><mi>c</mi><mo>±</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">\lambda_{1,2} = \frac{c \pm \sqrt{c^2 + 4r}}{2}</annotation></semantics></math>

Next, we are interested in <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mo>−</mo><mi>I</mi><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">|A - I|</annotation></semantics></math>. The eigenvalues of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>−</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">A - I</annotation></semantics></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>λ</mi><mi>i</mi></msub><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\lambda_i - 1</annotation></semantics></math> for each eigenvalue <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>λ</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\lambda_i</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>. Therefore, the eigenvalues of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>−</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">A - I</annotation></semantics></math> are:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>λ</mi><mn>1</mn></msub><mo>−</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>c</mi><mo>+</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\lambda_{1} - 1 = \frac{c + \sqrt{c^2 + 4r}}{2} - 1</annotation></semantics></math>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>λ</mi><mn>2</mn></msub><mo>−</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>c</mi><mo>−</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\lambda_{2} - 1 = \frac{c - \sqrt{c^2 + 4r}}{2} - 1</annotation></semantics></math>

The determinant <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mo>−</mo><mi>I</mi><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">|A - I|</annotation></semantics></math> can be computed as the product of the eigenvalues of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>−</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">A - I</annotation></semantics></math>:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mo>−</mo><mi>I</mi><mi mathvariant="normal">∣</mi><mo>=</mo><mrow><mo fence="true">(</mo><mfrac><mrow><mi>c</mi><mo>+</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn><mo fence="true">)</mo></mrow><mrow><mo fence="true">(</mo><mfrac><mrow><mi>c</mi><mo>−</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">|A - I| = \left( \frac{c + \sqrt{c^2 + 4r}}{2} - 1 \right) \left( \frac{c - \sqrt{c^2 + 4r}}{2} - 1 \right)</annotation></semantics></math>

Now, simplifying each term:

  1. First Eigenvalue:

    <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mrow><mi>c</mi><mo>+</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>c</mi><mo>−</mo><mn>2</mn><mo>+</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">\frac{c + \sqrt{c^2 + 4r}}{2} - 1 = \frac{c - 2 + \sqrt{c^2 + 4r}}{2}</annotation></semantics></math>
  2. Second Eigenvalue:

    <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mrow><mi>c</mi><mo>−</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>−</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>c</mi><mo>−</mo><mn>2</mn><mo>−</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>r</mi></mrow></msqrt></mrow><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">\frac{c - \sqrt{c^2 + 4r}}{2} - 1 = \frac{c - 2 - \sqrt{c^2 + 4r}}{2}</annotation></semantics></math>

Thus, we can combine these to find <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mo>−</mo><mi>I</mi><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">|A - I|</annotation></semantics></math>:

<math xmlns="http://www.w3.org/1998/Math/MathM
  Posted by wayne beaudet on 2025-01-09 22:56:22
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (2)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information