All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Consecutive-Free Sets (Posted on 2025-02-13) Difficulty: 3 of 5
Find the number of sets A such that A ⊂ {1, 2, 4, 5, 6, 8, 9, 10, 11}, |A| = 4 and A contains no consecutive integers.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Comment 4 of 4 |

We are given a set <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi><mo>=</mo><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mn>4</mn><mo separator="true">,</mo><mn>5</mn><mo separator="true">,</mo><mn>6</mn><mo separator="true">,</mo><mn>8</mn><mo separator="true">,</mo><mn>9</mn><mo separator="true">,</mo><mn>10</mn><mo separator="true">,</mo><mn>11</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">S = \{ 1, 2, 4, 5, 6, 8, 9, 10, 11 \}</annotation></semantics></math> and are tasked with finding how many subsets <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">A \subseteq S</annotation></semantics></math> satisfy the following conditions:

  • The size of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mi mathvariant="normal">∣</mi><mo>=</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">|A| = 4</annotation></semantics></math>,
  • <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> contains no consecutive integers.
<h3 data-start="246" data-end="287">Step 1: Label the elements of the set</h3>

The elements of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mn>4</mn><mo separator="true">,</mo><mn>5</mn><mo separator="true">,</mo><mn>6</mn><mo separator="true">,</mo><mn>8</mn><mo separator="true">,</mo><mn>9</mn><mo separator="true">,</mo><mn>10</mn><mo separator="true">,</mo><mn>11</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{ 1, 2, 4, 5, 6, 8, 9, 10, 11 \}</annotation></semantics></math>. Notice that there are 9 elements in total.

<h3 data-start="401" data-end="447">Step 2: Eliminate the consecutive elements</h3>

We need to select 4 elements from <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> such that no two of them are consecutive. To simplify, let's examine the relative positions of these elements in the set.

  • From the elements of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>, we can see that <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo separator="true">,</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">1, 2</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4</mn><mo separator="true">,</mo><mn>5</mn><mo separator="true">,</mo><mn>6</mn></mrow><annotation encoding="application/x-tex">4, 5, 6</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8</mn><mo separator="true">,</mo><mn>9</mn><mo separator="true">,</mo><mn>10</mn><mo separator="true">,</mo><mn>11</mn></mrow><annotation encoding="application/x-tex">8, 9, 10, 11</annotation></semantics></math> are groups of consecutive integers.
  • The key is to treat each group of consecutive elements as blocks and select one element from each block, ensuring that we don't select two consecutive elements.
<h3 data-start="911" data-end="944">Step 3: Transform the problem</h3>

Let’s define a new set by removing the consecutive elements and instead consider their positions:

  • <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{ 1, 2 \}</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>4</mn><mo separator="true">,</mo><mn>5</mn><mo separator="true">,</mo><mn>6</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{ 4, 5, 6 \}</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>8</mn><mo separator="true">,</mo><mn>9</mn><mo separator="true">,</mo><mn>10</mn><mo separator="true">,</mo><mn>11</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{ 8, 9, 10, 11 \}</annotation></semantics></math>.

These elements reduce the task to pick elements while ensuring that no two from different groups form a set with all subsets pleaseq then
By Sprunki


  Posted by BevisJason on 2025-02-14 21:34:29
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information