All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Powered Radicals (Posted on 2025-03-17) Difficulty: 3 of 5
If
(√6 + √2)9   A + B√C
---------- = -------
  (√8)9         D
Then, find the integers values of A, B, C, and D with C square-free.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
re: computer solution | Comment 2 of 7 |
(In reply to computer solution by Charlie)

I realize I misunderstood the definition of square-free. The program should have been


clc
lhs=(sqrt(6)+sqrt(2))^9/(8192*sqrt(2))
for c=1:50
  f=factor(c)';
  f=groupcounts(f);
  f=f<2;
  f=all(f);
  if all(f)
    for a=1:500
      for b=1:500
        for d=1:5000
          if abs((a+b*sqrt(c))/d-lhs)<.0000001
            fprintf('%4d%4d%4d%4d %18.14f %18.14f\n',[a b c d (a+b*sqrt(c))/d  (a+b*sqrt(c))/d-lhs])
          end
        end
      end
    end
  end
end 


lhs =
          16.5626179236887
 265 153   3  32  16.56261792368869   0.00000000000001
 489 172   7  57  16.56261799128263   0.00000006759394
 219 301  42 131  16.56261794061653   0.00000001692785
 262 335  46 153  16.56261793690827   0.00000001321959

showing  (A,B,C,D) = (265, 153,  3,  32) as a unique solution, as 27 is not square-free -- it's divisible by 9.


  Posted by Charlie on 2025-03-17 10:51:22
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information